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Abstract

Similarity network construction is a fundamental step in many approaches to community

detection in biomedical analysis. It is used both in the creation of network structures from

non-relational data and as a processing step in clustering pipelines. The foundation of any

network analysis hinges on the quality of the underlying network. With the rising popularity

of network learning and network-based clustering, the importance of correctly constructing

these networks is vital. However, the implications of key choices in similarity network con-

struction —– specifically in sparsification methods and multi-modal integration —– remain

poorly explored.

Similarity network construction involves several critical stages: computing pairwise similarities

using an appropriate metric, sparsifying these similarities to define edges, and, in the case of

multi-modal data, integrating the modalities. This thesis evaluates two key components within

this pipeline —– similarity sparsification and multi-modal integration — by measuring their

impact on community detection performance in the final network. To this end, I developed a

flexible network generation framework and used it to create a suite of simulated datasets with

known embedded cluster structures. These networks, with ground-truth communities, were

evaluated using a novel analytic framework focused on the community detection perform-

ance of diverse clustering algorithms –— Stochastic Block Modelling, Leiden clustering, and

Spectral clustering. A comprehensive set of metrics, including ground-truth cluster modularity,

Adjusted Rand Index (ARI), Adjusted Mutual Information (AMI), and network statistics such

as density, were employed to evaluate the quality of the constructed networks.

Firstly, I assess the quality of single-modality networks generated using common sparsification

methods by evaluating the community detection performance of the clustering algorithms. The

key sparsification approaches studied include K-Nearest Neighbour and ε-Thresholding. The

analysis reveals a critical limitation of ε-Thresholding, which fails to account for variations in

cluster density, resulting in networks of poor quality.

The thesis then extends the analysis to evaluate the effectiveness of popular multi-modal

similarity integration techniques, such as Similarity Network Fusion (SNF) and Neighborhood-

based Multi-Omics clustering (NEMO), across various multi-modal data scenarios. By apply-

ing transformations to ground-truth clusters, a range of modalities with differing embedded

cluster information and noise levels were generated to stress-test the integration techniques.

These scenarios included adjustments such as merging ground-truth clusters, increasing the

presence of outliers and noise, and adding uninformative modalities. Notably, SNF and NEMO

fail to outperform simpler techniques, such as mean similarity aggregation, when incorporating
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modalities with inconsistently embedded clusters. I demonstrate how integration methods can

be used to incorporate partial modalities — datasets where not all individuals have a full set

of measurements in all modalities. SNF shows significant sensitivity to incomplete modalities

while NEMO and mean aggregation are more resilient.

Finally, I validate the findings of our synthetic data scenarios using two biomedical datasets;

one for discerning cancer subtypes using data from The Cancer Genome Atlas (TCGA) and

the second for differentiating individuals with Autism Spectrum Disorder (ASD) using data

from the Simons Simplex Collection (SSC). Both datasets exemplify common challenges

encountered with biomedical data; high dimensionality, unbalanced class membership and

partial modalities.
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Lay Summary

This thesis explores how we can create networks to study biomedical data and understand

connections between different elements. Creating these networks is like building a map of

relationships, and is crucial for accurate analysis in biomedical research. To make a network

we have two key steps, measuring how similar individuals are and selecting which individuals

to connect together.

In this thesis, I develop a method to test different ways of selecting connections and study their

impact on the how well we can identify groups (communities) within data. One of the common

ways of doing this is to pick a cutoff value where we connect people above this value and do

not if it is below. I show this approach has serious limitations which may lead to less accurate

results.

The study also looks at situations where we have many different types of data available

from an entity, a general example would be having both image and text describing an ob-

ject. Combining and making use of different data sources (known as multi-modal data) is

a critical challenge in biomedical research. For example, a person’s biological information

can be measured by many different components including genes and proteins. A number of

approaches have been developed to make use of this data but they have not been compared

in a structured manner. Interestingly, I show advanced techniques do not always perform

better than simpler methods in handling these challenging datasets.

To confirm these findings, I apply these methods to real-world datasets related to cancer

and autism. These datasets reflect common issues in biomedical research, like incomplete

information and high complexity. I confirm my findings and introduce an method to understand

and compare the communities identified.

In summary, the thesis provides insights into improving the methods scientists use to build net-

works for studying biomedical data, ensuring more accurate and reliable results in identifying

patterns and relationships.
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Figures
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ods: thresholding, where edges below a certain similarity threshold are removed,

and K-Nearest Neighbour (KNN) selection, where each node retains connections

only to its K most similar neighbours. . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Approaches to Similarity Integration in Multi-Modal Network Construction.

Methods can be classified as early, intermediate or late integration techniques

where one of the modality’s i) data features Xi, ii) pairwise similarities Si or iii)

individual networks Gi are integrated together in order to construct a similarity

network G for the dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Types of Partial Data in Multi-Modal Datasets This figure illustrates two scen-

arios of partial data in multi-modal datasets: missing data either at random or

based on cluster membership. When measurement are missing based on cluster,

only individuals from cluster 1 (orange) do not have measurements in modality 3

(light green). In data partial at random, there is no link between the cluster label

and the partial data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Impact of Mislabelled Data vs. Incorrect Number of Clusters on Clustering

Scores. This figure examines the effects of mislabelled data and incorrect cluster

numbers on clustering performance metrics. Each panel shows the clusters grouped

by predicted cluster in ŷ and coloured by true cluster in y alongside the ARI, AMI,

Homogeneity and Completeness scores between ŷ and y. Panel A shows the

impact of mislabelling on clustering scores, where 6%, 10%, 22%, and 30% of

nodes are incorrectly labelled. Panel B illustrates the effect of incorrect numbers

of homogeneous clusters, where the original 3 clusters are split into 4, 5, 9,

and 15 sub-clusters, each containing only the same y classes. We can see two

distinct types of behaviour. The ARI and AMI decrease equivalently for mislabelled

nodes. ARI decreases more than the true accuracy, for example ARI 0.83 for

94% correctly labelled nodes. There is a deviation in behaviour between the two

scores in B when number of clusters is predicted incorrectly. The ARI decreases

more rapidly and scores labellings with homogeneous but incorrectly split clusters

worse than AMI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

x



FIGURES AND TABLES xi

2.1 Example Sparsification Methods on a Two-Dimensional Mixture of Gaussi-

ans; A-Data, B-KNN, C-Threshold, D-Combined, E-Linear Skewed KNN, F-Log

Skewed KNN. All networks have a density of 0.02, nodes are coloured by cluster

membership and node size is scaled by node degree (number of edges). We

can see in the Threshold networks (C & D) the large clusters are far denser. C

highlights the issue of isolated nodes while B highlights the significant increase in

edges less dense areas of the feature space receive using a KNN. . . . . . . . . 39

2.2 Mapping of Local Density Distribution to Number of Nearest Neighbours.

This figure demonstrates how the number of nearest neighbours assigned to a

node can be adapted based on local density in a dataset of mixed Gaussians.

A shows the distribution of local density for all nodes estimated by the mean

distance to their top K1 = 10 nearest neighbours. For each node, we map from its

local density to its assigned number of neighbours K. B & C show the distribution

of neighbours K each node is assigned using a linear and logarithm map respect-

ively from the local density to [1,2, ..,Kmax = 50]. The Logarithmic map creates a

larger number of nodes with low K. . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3 Creating a Nearest Neighbour Network with Adaptive Number of Neighbours.

A & B show the number of neighbours assigned to each node using linear and

logarithmic mapping respectively. C & D show the corresponding generated net-

works. In A & B points are coloured by their assigned number of neighbours K.

In C & D nodes are coloured by their degree. The same colour gradient is used

for all panels. The logarithm mapping assigns low density nodes lower K than the

linear mapping greatly reducing the density at the peripheries of the network. . . 44

2.4 Process of Generating Cluster Centers for Mixed Gaussian and Student’s-

t Distributions. We generate cluster centers in a sequential manner. Panels

A-C show a two-dimensional example of the iterative process. Two parameters

control the behaviour of process; U the diameter of the possible sampling region

and L the minimum radius around each center where we reject proposal points.

By adjusting U and L, we control the level of overlap between clusters and the

difficulty of the clustering problem. . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.5 Cluster Properties in Mixed Gaussian Data with Increasing Dimensions. Data

generated from A two-dimensional Gaussians and B fifty-dimensional Gaussians

projected to two-dimensions using PCA. Five settings of different numbers and

sizes of clusters are visualised — Equal 3, Equal 10, Equal 30, Single Large

and Mixed Sizes (detailed description provided in Section 2.4.1). By scaling the

diameter of the cluster center proposal region U and rejection radius L with 1/
√

d,

we ensure a similar level of overlap between the clusters and retain a challenging

community detection problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
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2.6 Comparison of Data Properties Between Gaussian and Student’s-t Distribu-

tions. This figure demonstrates how mixed Student’s-t distributions create more

challenging clustering problems due to higher noise levels and the presence of

outliers. We show examples of two-dimensional mixed cluster data generated

with A Gaussian and B Student’s-t distributions. The details on the size and

number of clusters in the Equal 30, Single Large and Mixed Sizes data can be

found in Section 2.4.1. C shows the Student’s-t data restricted to the area where

majority of samples lie. The heavier tail of the Student’s-t introduces a significantly

higher number of outlier points and increased overlap between clusters. This is

a far more challenging clustering scenario that will evaluate the performance of

different clustering and sparsification methods in a more noise intensive setting. . 51

2.7 Generating Categorical Features Using Independent Probability Distribu-

tions for Clusters. To generate a categorical feature, we first generate inde-

pendent distributions for each cluster across the m possible category values (in

this example there are 5). Observations xi are then sampled according to these

distributions for each data point within the cluster. For instance, if the categories

represent levels of language proficiency (e.g., k = 0: few words, k = 4: fluent),

individuals in cluster C1 are predominantly assigned k = 0, indicating minimal

proficiency, while individuals in cluster C2 are more likely to be assigned k = 1

or k = 2, reflecting intermediate levels of proficiency. . . . . . . . . . . . . . . . 53

2.8 Controlling Feature Generation with Beta Distribution for Categorical Data.

This figure illustrates how a Beta distribution is used to adjust the informativeness

of features in a categorical data generator. Features are generated with and

without cluster information (> or < 0.5) according to the value of a skew factor θi

sampled from a beta distribution. The tendency of each probability mass function

(PMF), sampled from the generator, to concentrate in a particular category is

controlled by θi. Values closer to 1 result in clearly defined clusters with more

samples from each cluster receiving the same value. In this way, the difficulty of

clustering the categorical dataset can be controlled. Our dataset is parameterised

by the number and size of the clusters, number of features d and parameters of a

beta distribution Beta(α ,β ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.9 Impact of Beta Distribution Parameters on Clustering Difficulty for Categor-

ical Data Data with 50 categorical features are generated for a number of pairs

of different α and β values. The two-dimensional PCA projection of the data, the

distribution of sampled skew factors θi and true Beta(α,β ) density function are

shown for each pair of (α ,β ) values. We can see the more informative features

that are included in the data the more distinct the clusters are and the easier the

clustering problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
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2.10 PCA Projections of Categorical Data with Different Beta Parameters and

Number of Clusters. This figure shows two-dimensional PCA projections of cat-

egorical data, generated with fifty features and five categories per feature. The

dataset consists of 2500 samples divided into 3, 10, and 30 clusters, with dif-

ferent pairs of α and β values applied. The projections illustrate how clusters
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visible, demonstrating the increased difficulty of distinguishing a higher number of
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ducted for all sparsification methods on a single data instance. Various approaches

can be used to select hyperparameters — clustering performance of an algorithm,
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fication methods across all five cluster settings of mixed Gaussian data is shown

using euclidean distance as a metric. Panel A shows the results of hyperpara-

meter evaluation, showing how ARI changes with varying hyperparameters. To

fairly compare the different parameters (K & ε), we plot ARI vs graph density. To

account for the high number of isolated nodes and subcomponents at low dens-

ities, Threshold networks are evaluated over a broader range of densities. Panel

B displays the distribution of ARI SBM scores across 10 instances, with hyper-

parameters optimised for the highest ARI performance. The Threshold network

consistently performs worse than all other methods, with a significant difference

(p < 1×10−12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
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2.13 ARI Performance of Sparsification Methods Across Different Clustering Al-

gorithms on Mixed Gaussian Data. This figure shows the mean ARI perform-

ance of various sparsification methods across three clustering algorithms: A SBM,

B Leiden, and C Spectral, evaluated across 10 instances of mixed Gaussian

data. Each data point represents the mean ARI on networks using the hyperpara-

meter found to havemaximum ARI for each clustering algorithm and sparsification

method respectively. 95% confidence intervals across the 10 instances are indic-

ated. The Threshold method consistently performs the worst across all algorithms

and cluster settings. Conversely, Log-Skewed KNN enhances the performance of

the SBM algorithm, particularly in problems involving large clusters such as Equal

3 and Single Large. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.14 ARI Performance of Sparsification Methods Across Clustering Algorithms
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with a mixture of Gaussians (see Figure 2.13B), and its performance is almost

random for Spectral and SBM clustering. . . . . . . . . . . . . . . . . . . . . . . 64

2.15 ARI Performance of Sparsification Methods Across Clustering Algorithms

with Categorical Data. This figure displays the ARI performance of various sparsi-

fication methods across three clustering algorithms: A SBM, B Leiden, and C

Spectral, evaluated over 10 instances of categorical data. Consistent with results

from other distributions (Figures 2.13 and 2.14), the Threshold method is the

poorest performer across all three algorithms. For SBM clustering, there is a no-

ticeable performance gap between KNN and the Log-Skewed and Linear-Skewed

KNN networks, especially for problems with large clusters such as Equal 3, Single

Large, and Mixed Sizes. Increased variance across methods and networks high-

lights greater differences between instances of categorical data. . . . . . . . . . 65
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2.16 Example Degree Distributions of Networks with Identical Density Across

Different Clustering Settings. Example degree distributions of networks for all

sparsification methods on the five clustering problems; A Equal 3, B Equal 10,

C Equal 30, D Single Large and E Mixed Sizes. Parameters are chosen so that

each network has a density of 0.025. Data from a mixture of Gaussians is used

in each instance. The KNN is linear in the log-log plot showing the count drops

exponentially as degree increases. By design it has no low degree nodes. The

Threshold network has a log normal degree distribution. The Combined network

resembles the Threshold distribution at high degree nodes and the KNN for its

lowest degree nodes. Both the Linear-Skewed and Log-Skewed KNN facilitate

the inclusion of nodes with degree < K, however, the Linear-Skewed KNN fails to

include a significant number of low degree nodes unlike the Log-Skewed KNN. . 67

2.17 Pairwise Distributions of Network Metrics and SBM ARI for Various Sparsi-

fication Methods on Gaussian Data. Pairwise distributions of I) ground truth

cluster Modularity, II) Graph Diameter, III) Average shortest Path length, IV) De-

gree Assortativity and V) SBM algorithm ARI for Threshold, KNN and Log-Skewed

KNN networks on Gaussian data. Threshold networks are less modular (I) and its

clusters are more interconnected with lower diameters and shorter average path

lengths (B II). KNN networks are dis-assortative (IV) with connections between

low and high degree nodes more likely. Log-Skewed KNN networks have larger

diameters and are more assortative than KNN networks (C II). . . . . . . . . . . 69

2.18 ARI Scores of Clustering Algorithms Across Sparsification Methods with

Mixed Gaussian Data The ARI score of the three clustering algorithms across all

five cluster settings and all five sparsification methods of mixed Gaussian data us-

ing euclidean distance as a metric. Panel A shows the change in performance for

different hyperparameter choices. The Leiden algorithm is the most consistence

across all parameter settings. SBM performs better at low network densities and

drops in performance the more edges that are added to the networks. Spectral is

noisy and frequently fails to converge to a solution. Panel B shows the distribution

of ARI score across 10 instances where the hyperparameter is selected to max-

imise each clusters performance. Leiden is again the most consistent and has

the highest average performance. The methods vary significantly in performance

across the clustering problems but Spectral is noticeably the worst performing

method by a significant marge (p < 1×10−20). . . . . . . . . . . . . . . . . . . 71
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2.19 Per Cluster F1-Score of Clustering Algorithms Across Different Data Distri-

butions. Per cluster F1-score of the three clustering algorithms on A Gaussian, B

Student’s-t and C Categorical data distributions on all network types and all clus-

tering problems. The performance of the algorithms at classifying small (<7.5%

of nodes in the network) and large clusters (>7.5% of nodes) are shown. The

SBM is most consistent across all distributions and has equivalent performance

predicting large and small clusters. Leiden is very good at detecting large clusters

but fails to distinguish small clusters in all 3 distributions. Spectral is also poor

at detecting small clusters but also suffers poor performance in predicting large

clusters in Gaussian and Student’s-t distributed data. . . . . . . . . . . . . . . . 72

2.20 Predicted vs. Ground Truth Number of Clusters for Clustering Algorithms on

Mixed Gaussian Data. This figure compares the predicted number of clusters for

A SBM, B Leiden, and C Spectral clustering algorithms against the ground truth

number of clusters on mixed Gaussian data. The ground truth number of clusters

varies by cluster problem, indicated by the dashed grey line. The clustering al-

gorithms’ behavior depends on the underlying network. On the Threshold net-

work, Leiden consistently predicts a significantly larger number of clusters across

all cluster problems. Despite this overestimation, the ARI (see Figure 2.13B) does

not always show a corresponding decrease in performance, as exemplified by

the high ARI for the Equal 3 problem. This discrepancy suggests that the large

number of predicted clusters often includes a few large clusters combined with

many isolated clusters of one or two nodes. The improved ARI of the skewed

KNN networks in problems with large clusters can be attributed to their closer

alignment with the ground truth number of clusters, as these networks do not split

large clusters into smaller subclusters unlike the KNN network. . . . . . . . . . . 73

2.21 Visualization of Clustering Predictions on KNN Network with Mixed Sizes

Data. Visualisation of clustering predictions for A SBM, B Leiden and C Spectral

on KNN network constructed from Mixed Sizes mixed Gaussian data. Nodes are

grouped by predicted cluster ŷ and coloured by ground truth cluster y. In general,

SBM has higher accuracy in identifying smaller clusters but splits larger clusters

into relatively homogeneous subgroups. Leiden predicts large clusters well but

groups smaller cluster together. It does not distinguish small clusters but has

higher ARI due to the fewer number of predicted clusters. Spectral is similar to

Leiden but underfits even more — predicting fewer clusters and even failing to

separate larger clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
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3.1 Generation of Modality-Specific Clusters and Feature Distributions. This fig-

ure illustrates the possible components that can be adjusted in the process of

generating modality-specific clusters and features from the ground truth labels y.

For each modality i, the modality ground truth clusters yi are derived by applying

one of four transformations to y: (i) keeping yi identical to y, (ii) splitting clusters in

y into subclusters, (iii) merging clusters in y, or (iv) generating random, unrelated

clusters. Features Xi are then generated based on yi using one of three distribu-

tions: (i) mixture of Gaussians, (ii) mixture of Student’s-t, or (iii) categorical data.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.2 AMI Performance Comparison of Similarity Integration Methods Across Mul-

tiple Modalities. AMI performance of A) SBM B) Leiden and C) Spectral cluster-

ing algorithm on 20 instances of 15 different modality problems using Euclidean

distance is presented. Five similarity integration methods are compared: SNF,

NEMO, Concatenated Xi, Mean Si and Extreme Mean. The average performance

of each clustering algorithm on a KNN network Gi using each individual modal-

ity is also shown. We can see all integration methods (including simple concat-

enation) provide a significant improvement in performance. SNF is consistently

outperformed by simpler integration methods such as Mean Si and NEMO on

Leiden clustering. Both NEMO and SNF do offer improvements in the accuracy

of SBM and Spectral clustering methods. A network constructed from simple

concatenation matches the performance of more complex approaches on easier

modality problems. However, in higher noise settings such as Noisy and Mixed

Noisy assessing each modality independently (i.e. using Mean Si, NEMO or SNF)

provides an improvement across all clustering algorithms. . . . . . . . . . . . . . 102

3.3 Comparison of Use of SNF Affinity vs. Raw Distance on Clustering Perform-

ance — SNF, NEMO, Mean Si. Log difference in SBM and Leiden clustering

AMI performance for networks constructed using SNF Affinity (Eq. 3.5) and raw

distance for both euclidean and correlation distance metrics across 40 instances

of each modality problem are shown. NEMO sees a consistent benefit in using

SNF affinity over raw distance. For Mean Si and SNF, the optimal choice changes

depending on the clustering problem. We can see in high noise problems and

problems involving Merged clusters raw distance is significantly preferable to the

SNF Affinity kernel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



FIGURES AND TABLES xviii

3.4 Comparison of Use of SNF Affinity vs. Raw Distance on Clustering Per-

formance — All Methods. Log difference in SBM and Leiden clustering AMI

performance for networks constructed using SNF Affinity (Eq 3.5) and raw dis-

tance for both euclidean and correlation distance metrics across 40 instances

of each modality problem. Concatenated Xi performs significantly worse when a

KNN network is constructed from SNF Affinity rather than raw distance across

all modality problems. Extreme Mean receives a significant jump in performance

when using SNF Affinity in noisy settings. This boost is a result of the SNF Affinity

removing disproportionate effects of outlier distances. . . . . . . . . . . . . . . . 106

3.5 Comparison of Multi-modal Integration vs Single Modality Networks. Log

AMI difference between average individual networks and SNF, Mean Si and NEMO

for A) SBM and B) Leiden clustering on 40 instances of 15 modality problems

using both euclidean and correlation metrics. SNF, NEMO and Mean Si have

very similar performance across all modality problems. The lower SBM cluster-

ing performance of Mean Si networks visible in Figure 3.2A is reduced with the

inclusion of the correlation metric. NEMO and SNF struggle with multiple merged

modalities and all methods outperform the average clustering performance on

networks constructed on each modality. . . . . . . . . . . . . . . . . . . . . . . 107

3.6 Comparison of the Network Properties of Integration Methods. The A) Mod-

ularity y, B) TPR y, C) Assortativity, D) Mean path length, E) Mean Degree and F)

Median Degree are shown for 20 instances of networks on all 15 modality prob-

lems. Mean Si and Concatenated Xi have very similar properties, with Mean Si

slightly more modular (A) and more likely to contain edges between high and low

degree nodes (C). Unlike other methods, SNF structure is less affected by Mixed

Student’s-t distributed data (D-F). Its density does not increase and the mean

path length is consistent. From C), we can see SNF has positive assortativity —

connections are more likely between nodes of similar degree. NEMO networks

are neutral and connections between nodes of all degrees are equally likely. . . . 109

3.7 Change in AMI Performance With Increasing Number of Modalities. Change

in AMI performance with increasing number of modalities for SBM clustering al-

gorithm on 5 instances of A) Easy, B) Noisy, C) All, D) MergeSplit, E) Mixture

and F) Any modality problems. SNF and NEMO converge on perfect detection

as the number of modalities increase. This is true for both noisy data with a high

number of outliers (B) as well as data containing uncorrelated clusters (E and F).

Extreme Mean improves dramatically in performance with more modalities even

outperforming Mean Si and Concatenated Xi. Its convergence is much slower than

SNF and NEMO. As seen in B) and F), Extreme Mean struggles with noisy data

containing outliers. Mean Si and Concatenated Xi perform similarly but consist-

ently underfit the data and reach a maximum AMI of 0.9. . . . . . . . . . . . . . 111
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3.8 Change in Ground Truth Modularity With Increasing Number of Modalities..

Change modularity of ground truth clusters y with increasing number of modalities

on 5 instances of A) Easy, B) Noisy, C) All, D) MergeSplit, E) Mixture and F) Any

modality problems. The maximum modularity of the ground truth clusters does not

exceed 0.9 for any network. Unlike its clustering performance, Mean Si modularity

matches SNF. Surprisingly, Extreme Mean fails to achieve high modularity in

Panels C) and E) but the corresponding clustering performance (Figure 3.7C and

3.7E) is close to maximum and higher than the more modular Mean Si. . . . . . 112

3.9 Change in Number of Network Components With Increasing Number of Mod-

alities. Change in number of components in the network for increasing number of

modalities on 5 instances of A) Easy, B) Noisy, C) ALL, D) MergeSplit, E) Mixture

and F) Any modality problems. The SNF network consistently splits into multiple

components across all modality problems and is the only method to produce

distinct components on the Noisy problem (B). With a perfect AMI of 1.0 (Figure

3.7), the ten components produced by SNF in A-E correspond to the ground truth

clusters. Interestingly, Mean Si also produces 10 separate components but fails to

achieve an AMI of 1.0. Extreme Mean networks do not into separate components

while NEMO only splits on the A) Easy and C) All modality problems. . . . . . . 114

3.10 Comparison of AMI Performance of Integration Methods on Data Partial

At Random. Change in SBM AMI performance for data partial at random on 5

instances of A) Easy, B) Mixed Normal, C) 1Rand, D) Noisy and E) Mixed Noisy

1Rand modality problems. Extreme Mean is the least affected by partial data

across all modality problems showing little to no change in performance. Mean

ignoring NaN is more resistant to partial data than other methods up to a certain

level of partial data before dropping in performance (A and B). SNF is highly

sensitive to partial data and initially shows a significant drop in performance but is

stable thereafter. Mean imputing Max performance degrades quickly with partial

data in Noisy modality problems (D and E). . . . . . . . . . . . . . . . . . . . . 115

3.11 Comparison of AMI Performance of Integration Methods on Data Partial

Based on Cluster. Change in SBM AMI performance for data partial based on

cluster on 5 instances of A) Easy, B) Mixed Normal, C) 1Rand, D) Noisy and

E) Mixed Noisy 1Rand modality problems. As the fraction of nodes with partial

data increases, the clusters in each modality become more consistent. The effect

of partial data is most severe at 50% when the enough members of the cluster

remain to add noise to the pairwise similarity within a modality but not enough

to form a strong cluster. When 100% of nodes have a NaN Xi, we only have

two measurements of pairwise similarity from the modalities. This explains the

increased noise of all methods in 1Rand (C) at higher levels of partial data — for

a majority of nodes half of the similarity measurements are completely random. . 117
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3.12 AMI Performance of Leiden and SBM Algorithms on Easy Modality Problem

with Increasing Partial Data. AMI performance of SBM and Leiden algorithms

on five instances of Easy modality problem with data partial at random and based

on cluster. We show A) SBM partial at random, B) Leiden partial at random,

C) SBM partial based on cluster and D) Leiden partial based on cluster. Leiden

clustering on Extreme Mean, Mean ignoring NaN and Concatenated Xi networks

is relatively unaffected by cluster-based partial data. For data partial at random,

Mean ignoring NaN and Concatenated Xi are more resilient than SBM clustering

but exhibit a drop in performance at higher levels. On SNF networks, Leiden

clustering shows an dramatic drop in performance and an increase in the variance

of AMI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.13 SBM AMI Between y and yNaN on the Easy Modality Problem With Increasing

Partial Data. SBM AMI between y and yNaN on five instances of Easy modality

problem with data partial at random and based on cluster. We show A) y partial

at random, B) yNaN partial at random, C) y partial based on cluster and D) yNaN

partial based on cluster. SNF is the most significantly affected by partial both

at random and based on cluster. Mean ignoring NaN experiences a change in

resistance when around 50% of individuals are absent at random from an Xi. It

rapidly drops in performance and becomes more similar to yNaN . Concatenated

Xi and Mean imputing Max quickly deteriorate in performance and similar to SNF

quickly align with yNaN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3.14 Effects of Data Partial at Random on Clustering Metrics: Modularity and

SBM AMI. Changes in A) Modularity y, B) y SBM AMI and C) yNaN SBM AMI

on 5 instances of Easy data with values partial at random. At 10% partial data,

SNF’s AMI drops significantly yet its modularity is barely affected. Extreme Mean

modularity increases with inclusion of partial data yet its cluster performance re-

mains stable across all levels of partial data. While NEMO shows a slight change

in modularity, the drop in performance is much more significant. These differ-

ences between AMI and modularity highlight the shortcomings of modularity as

an alternative metric for accuracy in situations without ground truth labels. . . . . 121

4.1 Partial Measurement Rates per Subtype in TCGA Datasets. Frequency of

partial measurements per subtype within the TCGA datasets. We can see that

within BRCA the Normal subtype has a significantly higher rate of individuals with

incomplete modality measurements. . . . . . . . . . . . . . . . . . . . . . . . . 136
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4.2 Mean and Maximum AMI Performance of Integration Methods on TCGA Data-

sets. Mean and Maximum Adjusted Mutual Information (AMI) clustering perform-

ance of SBM, Leiden, and Spectral algorithms on multi-modal integration net-

works constructed from complete and partial datasets across three TCGA data-

sets: BRCA, LGG, and KIPAN. SNF struggles with partial data and fails to outper-

form NEMO or Mean Max integration methods. NEMO consistently outperforms

all methods on both complete and partial BRCA and LGG datasets. There is a

notable drop in performance on complete KIPAN data where Mean Max exhibits

superior performance over other methods. The optimal SNF imputation strategy

is contingent upon the underlying dataset and selecting an optimal strategy is

challenging in unsupervised clustering scenarios. . . . . . . . . . . . . . . . . . 144

4.3 Comparison of Clustering Algorithms on TCGA Datasets by AMI, Homogen-

eity and Number of Predicted Clusters. The (A) AMI, (B) Homogeneity and

(C) Number of predicted clusters of the SBM, Leiden, and Spectral clustering

algorithms on the complete and partial BRCA, LGG and KIPAN datasets. The

reduced AMI of SBM and Leiden is a result of overfitting. They have high homo-

geneity, an indication that they split the true clusters in subclusters which results

in a drop in AMI due to chance correction. Spectral predicts fewer clusters and in

two of the datasets actually detects the correct number of clusters. SBM predicts

an order of magnitude more clusters than both Leiden and Spectral. The clusters

have high homogeneity but SBM has a significant reduction in AMI. . . . . . . . 147

4.4 Comparison of Imputation using Graph Neighbours on Prediction Perform-

ance. Test set Weighted F1-score of random forest prediction models trained

with 5 fold cross validation is shown for each of the TCGA BRCA, LGG and

KIPAN datasets. We compare graph based imputation to mean value imputation

on partial data and complete data prediction. The prediction of partial data out-

performs complete data prediction in BRCA and KIPAN. Graph based imputation

outperforms the more naive mean value imputation on KIPAN and BRCA. Both

datasets have higher rates of partial data. . . . . . . . . . . . . . . . . . . . . . 148

4.5 Predictability of Clusters Detected by SBM, Leiden and Spectral Algorithms

on TCGA Datasets. Weighted F1 scores of the prediction of cluster labels gen-

erated by SBM, Leiden, and Spectral clustering algorithms. These scores are

derived using 5-fold cross-validated random forest models trained on both par-

tial and complete datasets across the three datasets. The predictability of each

clustering algorithm remains consistent across datasets. Leiden clusters found on

SNF Mean Mod networks are harder to predict than SNF Mean Pair despite the

poorer AMI score of SNF Mean Pair compared to SNF Mean Mod. . . . . . . . . 150
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4.6 Comparison of Cluster AMI Performance and Predictability on TCGA Data-

sets. Cluster AMI score of SBM, Leiden and Spectral compared to the cross

validated weighted F1-score of models trained to predict cluster label. There is

a strong correlation between cluster predictability and AMI score (0.71). . . . . . 151

4.7 Distribution of Top 10% Most Important Features in Cluster Label Predic-

tion Across Modalities. Distribution of the top 10% (32) most influential fea-

tures across modalities in cross-validated random forest models for predicting the

ground truth, SBM, Leiden, and Spectral clusters. Our analysis is restricted to the

prediction of clusters identified by the highest-performing networks, specifically

Mean Max, NEMO, and SNF Mean Mod. The feature importance in ground truth

cluster prediction does not align with the highest performing modalities for cluster

detection in LGG and KIPAN seen in Table 4.6. . . . . . . . . . . . . . . . . . . 153

4.8 Distribution of Top 10% Most Important Features in Cluster Label Prediction

Across Modalities for Complete and Partial TCGA Datasets. Comparison of

the distribution of the top 10% (32) most influential features across modalities

between Partial and Complete data in cross-validated random forest models for

predicting SBM, Leiden, and Spectral clusters. The included models are restricted

to the prediction of clusters identified by the highest-performing networks, specific-

ally Mean Max, NEMO, and SNF Mean Mod. The variance of distribution of factors

within both nodesets is higher in BRCA. Two possible for this increase in variance

is a lack of agreement between the clustering algorithms or minimal differences

in the importance of modalities resulting in noisy ordering of the features. . . . . 154

4.9 AMI Clustering Performance for Partial and Complete TCGA Datasets by

Nodetype. Breakdown of partial and complete data clustering performance by

nodetype through the mean AMI scores generated by SBM, Leiden, and Spectral

clustering algorithms on multi-modal integration networks across BRCA, LGG,

and KIPAN datasets. We show the AMI scores for partial data (y — Partial),

complete data (y — Complete), a breakdown of y — Partial based on nodetype,

nodes exclusive to partial data (y — P only ) and nodes present in both partial

and complete datasets (y — P & C), and the AMI agreement of complete nodes

between their partial and complete clusters (P & C consensus). Adding nodes

with partial data to the network does not reduce the clustering performance of

nodes with a complete set of measurements. . . . . . . . . . . . . . . . . . . . 155
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4.10 Weighted F1 Prediction Performance for Partial and Complete TCGA Data-

sets by Nodetype. Breakdown of partial and complete data ground truth pre-

diction performance by nodetype through the mean weighted F1 scores on multi-

modal integration networks across BRCA, LGG, and KIPAN datasets. We show

the weighted F1 scores for partial data (y — Partial), complete data (y — Com-

plete), a breakdown of y — Partial based on nodetype, nodes exclusive to partial

data (y — P only ) and nodes present in both partial and complete datasets (y

— P & C), and the F1-score agreement of complete nodes between their partial

and complete clusters (P & C consensus). The prediction of nodes with complete

data improves significantly with inclusion of partial data in training of the prediction

model on TCGA BRCA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

4.11 Mean and Maximum AMI Performance of Integration Methods on SSC Data.

Average and maximum AMI clustering performance of SBM, Leiden, and Spectral

clustering within multi-modal integration networks across the complete and partial

data within the SSC using correlation metric. NEMO performs consistently well

across nodesets show high maximum and mean clustering performance. The

drop in performance of SNF with the inclusion of partial data is inconsistent. . . . 159

4.12 Comparison of Clustering Algorithms on SSC Datasets by AMI, Homogen-

eity and Number of Predicted Clusters. The (A) AMI, (B) Homogeneity and

(C) number of predicted clusters of the SBM, Leiden, and Spectral clustering

algorithms on the complete and partial SSC data. Again Leiden and SBM discover

a more fine grained split of the data with larger number of predicted clusters. The

contrast between SNF Mean Mod and SNF Mean Pair is stark. SNF Mean pair

discovers clusters with high homogeneity across all three algorithms while SNF

Mean Mod fails to separate siblings and probands. . . . . . . . . . . . . . . . . 160

4.13 Weighted F1 Prediction Performance for Partial and Complete SSC Data by

Nodetype. Comparison of ground truth cluster prediction in both complete and

partial data using mean and graph-based imputation on SSC data. We show the

weighted F1 scores for partial data (y — Partial), complete data (y — Complete),

a breakdown of y — Partial based on nodetype, nodes exclusive to partial data

(y — P only ) and nodes present in both partial and complete datasets (y — P

& C), and the F1-score agreement of complete nodes between their partial and

complete clusters (P & C consensus). Prediction performance is highly accurate

using all imputation methods with all achieving a weighted F1-score > 0.98. The

prediction of complete nodes improves with the inclusion of partial data using

NEMO imputation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
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4.14 Top 15 Most Informative Variables in Cluster Label Prediction. Wordcloud

of top 15 most informative variables in the prediction of A) Ground Truth, B)

SBM, C) Leiden and D) Spectral clusters on the NEMO network created on the

complete set. The size of the visualised feature name corresponds to its relative

importance. We can see the overall summary scores of SRS Parent and SCQ

Parent are highly informative for Ground Truth, Leiden and Spectral clusters.

For SBM clusters, the SRS Teacher and Vineland scores are more informative,

reinforcing the differences found in the AMI scores between the detected clusters. 161

A.1 AMI Performance of Sparsification Methods Across Different Clustering Al-

gorithms on Mixed Gaussian Data. The AMI performance of the sparsification

methods using A SBM, B Leiden and C Spectral for mixed Gaussian data is

shown. 10 instances of data are evaluated using the optimal parameter identified

for each clustering algorithm on each sparsification method. The differences in

performance form cluster problem to cluster problem is not as significant. AMI

does not punish incorrect prediction of the number of clusters as severely and

gap between SBM and Leiden clustering is reduced compared to ARI. . . . . . . 171

A.2 AMI Performance of Sparsification Methods Across Different Clustering Al-

gorithms on Mixed Student’s-t Data. The AMI performance of the sparsification

methods using A SBM, B Leiden and C Spectral for mixed Student’s-t data is

shown. 10 instances of data are evaluated using the optimal parameter identi-

fied for each clustering algorithm on each sparsification method. The differences

between Linear-Skewed KNN and KNN seen in ARI evaluation (Figure 2.14)

disappear. Threshold network performance, while still the worst performing, is not

as poor when evaluated with AMI. . . . . . . . . . . . . . . . . . . . . . . . . . 172

A.3 AMI Performance of Sparsification Methods Across Different Clustering Al-

gorithms on Categorical Data.The AMI performance of the sparsification meth-

ods using A SBM, B Leiden and C Spectral for mixed Student’s-t data is shown.

10 instances of data are evaluated using the optimal parameter identified for each

clustering algorithm on each sparsification method. . . . . . . . . . . . . . . . . 172

A.4 Hyperparameter Search and Performance Evaluation of Sparsification Meth-

ods using mean SBM and Leiden ARI.The mean SBM and Leiden clustering

ARI of the five sparsification methods across all five cluster settings of mixed

Gaussian data is shown using euclidean distance as a metric. Panel A shows the

change in performance for different hyperparameter choices. To fairly compare the

different parameters, we plot ARI vs graph density. Panel B shows the distribution

of mean SBM and Leiden ARI across 10 instances. Hyperparameters are selected

which result in the highest mean Leiden and SBM ARI score on each method. . . 173
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A.5 Relationship between Mean ARI and Clustering Quality Measures of Sparsi-

fication methods on Mixed Gaussian and Student’s-t Data. Average ARI for

Leiden and SBM methods for ground truth cluster quality score for Gaussian

and Student’s-t distributed data across all clustering problems vs. A Modularity,

B Separability, C Conductance, D TPR, E Clustering Coefficient and F average

density. We can see quality of the true clusters is positively correlated for A & B

and negatively correlated for C, E, and F. . . . . . . . . . . . . . . . . . . . . . 174

A.6 Relationship between Ground Truth Modularity and Mean ARI on Mixed Gaus-

sian Data. Ground truth cluster y modularity scores for mixed Gaussian data on

the five clustering problems. Ground truth modularity is strongly correlated with

mean ARI of Leiden and SBM clustering methods. We can see threshold based

methods (Threshold & Combined) consistently produce networks with lower mod-

ularity compared to the KNN-based methods. Log-Skewed KNN creates networks

with higher modularity than KNN in settings with large clusters. Surprisingly, no

method produces clusters with a modularity above 0.7 across all problems. . . . 175

A.7 Pairwise Distributions of Network Metrics and SBM ARI for KNN networks

by Cluster Problem on Gaussian Data. Difference in structure of KNN networks

between problems with a low number of large clusters and problems with a high

number of smaller clusters. Large clusters have a smaller diameter, lower aver-

age path length and significantly lower predicted cluster modularity. This lower

predicted cluster modularity corresponds strongly to lower ARI performance. . . 176

B.1 AMI Performance Comparison of Similarity Integration Methods across Mul-

tiple Modalities using Correlation Metric. AMI performance of A) SBM B) Leiden
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Chapter 1

Introduction

A network is a collection of individuals or entities (nodes) joined by connections (edges)

representing relationships or interactions. Networks are data structures used to represent

and capture the complex relationships between a set of entities. Networks have been ana-

lysed and constructed across many domains and applications including energy networks,

transportation networks, internet and communication networks, financial networks and citation

and collaboration networks Barabási and Márton (2016); M. Newman (2018). Typical analysis

can include studying dynamics within the network e.g. epidemiological spread of disease

Keeling and Eames (2005), examining the robustness of networks to sudden changes or

loss of connections Callaway, Newman, Strogatz, and Watts (2000) and identifying com-

munities embedded within the structure Khan and Niazi (2017). Recently another field of

study has emerged; network learning, which has exploded in popularity W. L. Hamilton, Ying,

and Leskovec (2017). Machine learning techniques are used to leverage the relationships

embedded within the network to make predictions on node, edge and graph properties Wu

et al. (2021); Zhou et al. (2020). With the breadth of analysis available, naturally the question

arises, how does one create a network in order to leverage these techniques?

In traditional networks, the relationships between entities have been inherent in the applica-

tion. For example, energy networks can be defined by the flow of energy from power plant to

home through physical wires Pagani and Aiello (2013). Internet networks can be defined by

explicit weblinks between webpages Broder et al. (2000). Citation networks can be defined by

the set of citations within each paper Radicchi, Fortunato, and Vespignani (2011). A relation-

ship between entities is clearly defined within the context of the problem and is typically binary.

A wire physically connects two houses or it doesn’t, a hyperlink is included in a webpage or it

is absent. The relationship is defined by the presence or absence of an explicit link between

entities. Similarly, social networks can be defined by who interacts with who e.g. who follows

who on Instagram Manikonda, Hu, and Kambhampati (2014). All these networks encapsulate

a set of sparse relationships where the presence or absence of a relationship can be clearly

identified. However, in many contexts a relationship between entities clearly exists but its

representation is far less obvious.

1
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Imagine we have a group of patients at a hospital, we can suppose that there is a relationship

in the way their set of diseases/illnesses express themselves. Some individuals will have

conditions very alike. Others will differ significantly, both in progression and expression of

symptoms. We could create a network by adding edges between the most similar individuals.

Yet this raises two questions, How do we estimate the similarity between two entities

and what level of similarity defines a relationship? As another example, consider the

construction of a social network based on interactions between a set of individuals. What

defines a social relationship? Consider a typical group of individuals, regular interactions,

such as in a workplace, clearly define a social connection but a once off interaction when

purchasing a coffee in a cafe might want to be ignored. In a particular set of individuals, each

individual will be more similar to some people and less similar to others. By counting the

number and frequency of interactions between individuals, we obtain a method of estimating

their similarity. However, we again encounter the question - How similar do a pair of entities

need to be in order to define a relationship and how do we identify this cutoff?

Networks constructed from measurements of similarity are known as similarity networks.

Similarity networks have been used extensively in biomedical applications. For example, the

analysis of gene expression through expression networks Ruan, Dean, and Zhang (2010)

and analysis of disease through patient networks Pai and Bader (2018). There are two funda-

mental steps in the construction of a similarity network; 1) the calculation of pairwise similarity

between all entities and 2) the addition of edges to the network based on the value of their

similarity1. In the context of community detection, a good similarity metric needs to assign

high similarity between individuals within the same community and low similarly between

individuals in different communities. While this estimation of similarity between individuals

is a challenging task, the suitability of a particular metric is highly dependent on the particular

application and the underlying data Dozmorov (2018); Huang, Luo, Li, Wu, and Wang (2021).

In contrast, the process of constructing a network from a set of pairwise similarity measure-

ments should be largely application independent provided an accurate and "good" similarity

measure is selected. This edge selection process is vital. The key information contained within

a network is its edge structure. The edges of a network define the communities, the flow of

information and the dynamics within the network. It is the singular most important component

of a network. As a result, the selection process of edges from similarity scores is essential to

the network representation.

1. A pairwise similarity matrix can also be considered a weighted fully connected network where all nodes are to
connected to all other nodes. (2) can also be considered a sparsification process where low similarity edges are
removed.
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What are the approaches to network construction from pairwise values? As discussed by

Von Luxburg in von Luxburg (2007), perhaps the simplest approach to similarity network

construction is thresholding. A threshold similarity value ε is selected and connections below

this cutoff are removed while edges above the threshold are retained in the network. A highly

popular technique, threshold similarity networks have been used to analyse gene expression

networks Allen, Xie, Chen, Girard, and Xiao (2012); Langfelder and Horvath (2008), chemical

networks Scalfani, Patel, and Fernandez (2022) and financial networks Nie and Song (2018).

Equally popular is the process of K-Nearest Neighbour (KNN) network construction where the

K most similar edges for each node are retained while all other connections are removed

Pai and Bader (2018); S. Islam et al. (2021); B. Wang et al. (2014). These are the two

most common approaches of transforming a pairwise similarity matrix into a sparse network,

a process I refer to in this thesis as sparsification. Both methods have highly influential

hyperparameters - choice of threshold ε and choice of K that heavily dictate the edge structure

of the resulting network. Yet, the influence of sparsification choice and hyperparameter choice

is rarely discussed. One of the few papers discussing the different approaches is von Luxburg

(2007). Others have examined the effect of choice of threshold on network statistics such as

clustering coefficient Zahoránszky-Kőhalmi, Bologa, and Oprea (2016) or compared the effect

of hyperparameter selection on connected components in both threshold and KNN networks

Ruan et al. (2010). The thesis seeks to investigate the effect of choice of sparsification on

network structure but optimal network structure may depend on the particular task. For ex-

ample node classification might have different structural requirements to community detection.

I focus on the task of community detection. More specifically, what is the optimal choice of

sparsification method when performing community detection?

Biomedical data is multifaceted. Datasets can be comprised of several modalities with vastly

different numbers of features and varying distributions — each offering unique challenges.

Examples include patient data comprised of health records and medical imaging Acosta,

Falcone, Rajpurkar, and Topol (2022) and multi-omic data i.e. data from the genome, pro-

teome, transcriptome, epigenome, metabolome, or microbiome Santiago-Rodriguez and Hol-

lister (2021). For a particular set of entities, each modality offers a unique insight into their

relationships. Disease subtyping and clustering are common analysis tasks. While the large

number of features can offer challenges, network based approaches have shown success

at unlocking the community structure within. A key step in constructing similarity networks

from multi-modal data is integration. Should different modalities be processed independ-

ently or combined? Should separate networks be constructed or should pairwise similarity

be combined before constructing a network? Complex methods such as similarity network

fusion (SNF) B. Wang et al. (2014), which constructs a network by diffusing similarity across

modalities, has shown success in cancer subtype detection. Yet the structure of networks

resulting from its complex mechanisms are poorly understood. Simpler integration methods
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such as NEighborhood based Multi-Omics clustering (NEMO) Rappoport and Shamir (2019)

have shown similar clustering performance through use of a far simpler integration process

(mean relative similarity of KNN networks). One study found that a simple mean similarity

across modalities consistently outperformed SNF Mitra, Saha, and Hasanuzzaman (2020). In

this this, I examine the effect of integration method on network structure. How does choice

of integration method affect community detection performance? Does SNF outperform

simpler integration methods?

Biomedical data is typically incomplete Molenberghs and Kenward (2007); Voillet, Besse,

Liaubet, San Cristobal, and González (2016). While the effect of item non-response (values

unavailable for an individual in a a particular feature or set of features) is well studied Arslan-

turk, Siadat, Ogunyemi, Killinger, and Diokno (2016); Rubin (2018); Stiglic, Kocbek, Fijacko,

Sheikh, and Pajnkihar (2019); Wells, Chagin, Nowacki, and Kattan (2013), a unique challenge

in multi-modal data is unit non-response (no values available for an individual in any features

within a modality) and partially complete modalities. Individuals often have an incomplete

set of measurements and the number of observations within each modality can vary. While

understandable factors such as difficulties with funding or differences in data measurement

tools across clinical locations contribute to the difficulty of data collection Hall, Kea, and Wang

(2019); Piantadosi (2005); Santiago-Rodriguez and Hollister (2021), there are dangers unit

non-response may be a result of factors related to the disease or feature of interest Nakagawa

and Freckleton (2008). A common solution to partially complete modalities is removal of

individuals absent from modalities or the removal of entire modalities with low observation

counts from analysis. This can lead to significant data wastage. Furthermore, within each

modality when we ignore samples, we reduce the coverage of our feature distributions and

reduce the quality of our representations within each modality. The problem of partial data

is well recognised within the field of multi-view learning J. Wen et al. (2022); S.-Y. Li, Jiang,

and Zhou (2014). For example, NEMO integration was developed to tackle the integration

of partial modalities Rappoport and Shamir (2019). Within these works, the absence of an

individual’s observations from modalities are typically assumed to occur at random. Yet a

fundamental concept in the study of item non-response is that the process of missingness can

depend both on observed and unobserved variables. Data entries can be missing completely

at random (missing independent of observed and unobserved variables), missing at random

(missing dependent on observed variables) and missing not at random (missing dependent

on unobserved variables) Nabi, Bhattacharya, Shpitser, and Robins (2022). Similarly, unit

non response can occur due to observed and unobserved variables. In this thesis, I explore

the effect of partial data, both random and non-random, on network structure. Can partially
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complete data be incorporated into network construction? What is the effect of non

random partial data? How does partial data affect network structure and do certain

methods incorporate partial data better than others?

The next sections give an overview of the key research topics in the construction of similar-

ity networks from uni-modal and multi-modal data. I start by introducing some fundamental

network analysis concepts before introducing the key research topics this thesis seeks to

address; sparsification, multi-modal integration and partially complete data. I discuss ap-

proaches to unsupervised clustering, also referred to as community detection, as well as

introducing the metrics and quality scores that will be used to evaluate the networks construc-

ted. I finish by outlining the structure and main contributions of this thesis.

1.1 Networks

Networks are also commonly referred to as graphs and in general the two terms are used

interchangeably. It is important to note that there is a subtle distinction between the two. A

network is a real-world system with practical applications, while a graph is the mathematical

abstraction with vertices and edges that is used to represent these relationships. The same

graph can be used to represent several networks. For example, nodes can correspond to dif-

ferent real world entities such as authors in citation network or proteins in a protein interaction

network.

A graph can be formally defined as G = (V,E) where V represents a set of vertices (nodes)

and E represents a set of edges (links) connecting pairs of vertices. Let N be the number of

vertices |V |. Let m be the number of edges |E|. A graph can be fully specified by its adjacency

matrix A, which is a N×N matrix where each element ai j is defined by

ai j =

1 if an edge exists between node i and node j

0 if no edge exists between node i and node j
(1.1)

In undirected networks, A is symmetric with ai j = a ji. The degree of a node is the count of the

number of edges connected to it. In an undirected network, the degree of node i is given by

ki =
N

∑
j=1

ai j =
N

∑
j=1

a ji. (1.2)

The total number of edges in a network can be expressed as a sum of node degrees

m =
1
2

N

∑
i=1

ki. (1.3)
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In most real world networks, the degree of their nodes are not homogeneous and instead

are distributed across a range of values. A networks degree distribution is the probability pk

that a randomly selected node in the network has degree k. The degree distribution is the

normalised histogram given by

pk =
Nk

N
(1.4)

where Nk is the number of nodes of degree k.

Two of the most studied degree distributions are Poisson and scale-free degree distributions.

Randomly generated networks such as Erdos-Renyi networks where N nodes are generated

and m edges are placed at random Erdös and Rényi (1959) have degree distributions well

approximated by the Poisson distribution and is characterised by a bell-shaped curve. Real

world networks such as social networks or the internet exhibit scale-free distributions where

the majority of nodes have low degree but a select number of nodes have very high degree.

Such networks are typically power-law distributions where the probability that a random node

has degree k is

pk ∝ k−γ (1.5)

for some constant γ . High degree nodes in scale-free networks are typically referred to as

hubs. These highly connected nodes are central to the flow of information in the network

and critical to network robustness. Scale-free networks are highly robust to random node

removal but targeted removal of central hubs cause a significant collapse in information flow

and connectivity Barabási and Márton (2016); M. Newman (2018).

Degree assortativity coefficient r is the Pearson correlation coefficient of degree between

pairs of linked nodes. It is a measure of the tendency of nodes to connect to others of a

similar degree. Positive assortativity indicates nodes with high degrees connect to nodes

of high degree while nodes of low degree connect to nodes of low degree. Conversely in

networks with negative assortativity high degree nodes connect to low degree nodes. Protein

interaction networks typically display positive assortativity while the internet web page network

is an example of a negatively assortative network.

Several metrics can describe the structure of a network beyond its degree distribution. Path

length is a common measure of describing the interconnectivity and flow of information in a

network. The shortest path between two nodes i and j is the path travelled along the edges

of the network with the fewest links between i and j. The diameter of a network is the longest

shortest path between all pairs of nodes in the network. The average path length of a network

is average shortest path between all pairs of nodes in the network.
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The clustering coefficient measures the tendency of nodes to cluster together. The local

clustering coefficient for a node i is given by

Ci =
2mi

ki(ki−1)
(1.6)

where ki is the degree of node i and mi is the number of links between the ki neighbours of

node i. It is a measure of the density of the neighbourhood around a node and the tendency

of a node’s neighbours to connect together. The average clustering coefficient C is measures

the degree of clustering within the entire network and defined as

C =
1
N

N

∑
i=1

Ci (1.7)

It is important to note that degree distributions do not fully specify the edge structure of

network. Two networks with identical degree distributions can have vastly different underlying

structure. A typical example would be a random network versus a network with embedded

clusters or communities. The community network will have groups of nodes that are more

densely connected internally to themselves with few connections to other external nodes

in the network. In contrast, the random network has edges distributed randomly across all

nodes. Random networks have lower clustering coefficients unlike the community networks.

The average path length in a random network will be lower. Communities can increase the

total average path length as there are fewer inter community edges but within a community

the path lengths will be lower due to the high density.

In this dissertation, I focus on undirected unweighted networks. Directed networks have non-

symmetric relationships between entities where an edge between nodes i and j does not

automatically indicate a corresponding edge exists between nodes j and i (ai j ̸= a ji). An

example of a directed network is a network of the internet constructed from hyperlinks Broder

et al. (2000). A blog post might contain a link to a large website such as wikipedia.org

but wikipedia.org is unlikely to contain a link to a smaller website such as a blog post.

Weighted networks are networks where edges have different weights associated to them

(ai j = wi j,wi j ∈ R). Similarity networks can be easily represented as a weighted network

simply by setting the edge weight equal to the pairwise similarity between nodes.
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Another common type of network are heterogeneous networks. Heterogeneous networks are

networks with multiple types of nodes and edges. Knowledge graphs e.g. Wikidata Vrandečić

and Krötzsch (2014) are examples of heterogeneous networks where different sets of entit-

ies are represented in the same network. For example, a knowledge graph of a university

might contain different node types such as department, lecturer, student, course and different

relations such as teaches, member of, enrolled in. Another common form of heterogeneous

network are ontologies such as the Gene Ontology Gene Ontology Consortium (2004) or Hu-

man Phenotype Ontology Köhler et al. (2014) which are directed networks with formal logical

rules governing the relations between entities in a particular domain. I focus on homogeneous

networks with a single node and edge type. Not only is analysis such as community detection

simpler on homogeneous network, the majority of clustering techniques and similarity network

applications focus on homogeneous unweighted undirected network representations.

1.2 Similarity Networks

Similarity networks facilitate the construction of a network object from non-relational data.

Similarity networks allow the application of network analysis approaches such as community

detection or link prediction to non traditional network data. The two key steps in similarity

network construction are the calculation of pairwise similarity between all nodes and the

construction of a sparse network by adding or removing edges based on this similarity value.

The estimation of similarity is a highly challenging task and the choice of metric is highly

dependant both on the particular application and the type of relationships that we seek to

represent in the network. For example, when constructing an airport network, one might

initially connect the closest airports based on geographical distance e.g. Gatwick and Heath-

row airports should have a relationship as both are airports based in London. A far more

informative measurement of similarity would be measuring the number of flights or the number

of passengers flying between two airports. While simple metrics such as Euclidean distance

or Pearson correlation are typically used to calculate similarity Dai, Zhu, and Liu (2020); Kim

et al. (2019); Langfelder and Horvath (2008), numerous application specific metrics have been

developed. Examples include measurements of disease similarity based on shared gene

ontology terms P. Ni et al. (2020), similarity of drugs based on molecular structure Huang

et al. (2021) or the fold similarity of proteins Sun, Zou, Guan, and Jin (2006). Due to the

high dependency on the particular application of focus, we are less interested in exploring

the choice of metric used to calculate similarity and far more interested in the process of

constructing a network from pairwise similarity values.
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To construct a similarity network, we first compute pairwise similarity scores between all

entities (nodes). Typically, similarity score functions are structured around a particular distance

metric, which is then converted into a similarity score. For example, the Gaussian similarity

kernel s(xi,x j) = exp(−||xi−x j||2/2σ) makes use of the euclidean distance d(xi,x j) = ||xi−
x j||2 between two nodes xi and x j with hyperparameter σ . As shown in Figure 1.1, the pairwise

similarity matrix S, where Si j = s(xi,x j) for similarity function s, can be considered a weighted,

fully connected network where each node is connected to all other nodes (weighted by their

corresponding pairwise similarity score). The process of creating a network from S can be

considered in two ways: sparsifying the fully connected network by removing uninformative or

dissimilar connections (edges), or constructing the network by starting with the set of entities

and adding only the most similar edges between nodes. In this work, the process of creating

unweighted undirected networks from a pairwise distance/similarity matrix is referred to as

sparsification.

Figure 1.1: Illustration of the Sparsification of Pairwise Matrices. This figure demon-
strates how pairwise similarity matrices can be represented as fully connected networks,
where sparsification reduces the network to a sparse yet informative edge structure. The
figure provides a simple example of two widely used sparsification methods: thresholding,
where edges below a certain similarity threshold are removed, and K-Nearest Neighbour
(KNN) selection, where each node retains connections only to its K most similar neighbours.

The motivations for the sparsification process are three-fold; firstly, naturally arising networks

are typically sparse and the methods developed for network analysis were designed for sparse

networks where the absence of a edge between individuals can be as informative as the

presence of an edge. Secondly, many methods have computation complexity proportional

to the number of edges O (|E|) in the network, computation over dense networks can quickly
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become intractable, yet identical computations on sparse networks with a much larger number

of nodes remain feasible. Thirdly, our similarity metric provides a ranking or an estimation

of how similar individuals are. A fully connected network contains edges with weak evid-

ence/justification and the sparsification process allows us to remove uninformative edges.

The challenge of sparsification is the identification of these unlikely edges and the retention

of edges that will be informative for our task.

As stated above, the process of sparsification converts our weighted similarity matrix to a

unweighted undirected network G. The only criteria of interest in our similarity metric is the

ranking or distribution of the pairwise distances between data points. The particular value

assigned by a similarity function s is less important as this value will not be used once the

unweighted network is constructed. For example, the Gaussian kernel s(xi,x j) = exp(−||xi−
x j||2/2σ) and the euclidean distance d(xi,x j) = ||xi − x j||2 can be considered equivalent

for fixed σ as the order/ranking of edges calculated using both functions will be identical.

The subsequent edges added to the network will be the same for both similarity functions.

d is a distance/dissimilarity but can be converted to a similarity by simply reversing the

order sd(xi,x j) = −d(xi,x j). In the Gaussian kernel, large euclidean distances are shrunk

to 0, where as, similar objects with small distance values will be kept close to 1. σ is a

key hyperparameter needs that needs tuning to identify the neighbourhood or set of values

where the similarity should not be shrunk. In this work, such tuning is not required as we only

consider the ordering or percentiles within the pairwise similarity not the specific value that is

outputted.

As introduced earlier, thresholding and the selection of K-Nearest Neighbors (KNN) are among

the most popular approaches to sparsification. While threshold networks are theoretically

simple to construct, selecting an appropriate threshold ε in practice poses significant chal-

lenges. A threshold set too high can lead to disconnected components and isolated nodes,

whereas a threshold set too low results in a highly dense network, potentially obscuring com-

munity structures and rendering the network uninformative Ruan et al. (2010). It is important

to note that using a single global threshold to filter edges is an overly simplistic approach that

fails to account for local variations in the data space, which can lead to the aforementioned

issues.

To address these shortcomings, a more sophisticated approach would involve examining

local density and adopting a dynamic threshold that accounts for local similarities between

nodes. However, this raises further challenges: How should we determine an appropriate local

threshold for each node? What criteria should guide the selection of εi for individual nodes?
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K-Nearest Neighbours, a popular alternative to thresholding, offers a solution to these chal-

lenges by providing a mechanism for dynamic thresholding. In a KNN-based network, the

threshold εi for each node i is implicitly defined as the similarity to its Kth nearest neighbor.

Instead of analysing the entire distribution of similarity values and selecting a global cutoff

ε , edges are retained based on local connections, with each node connected to its K most

similar neighbours. This approach mitigates the risk of disconnected components and isolated

nodes, which are less common in KNN networks.

Although choosing an appropriate K remains a challenge, it is typically selected to maintain

low network density. One notable advantage of KNN networks over threshold networks is their

scalability through the use of approximate KNN methods J. Chen, Fang, and Saad (2009).

Despite the significant differences in network structure induced by these methods, their effects

are rarely discussed. In Chapter 2, I will explore the impact of the choice of sparsification

method on network structure, particularly focusing on how it influences community detection

performance.

1.3 Multi-Modal Integration

There are number of different ways to approach the challenge of dealing with multi-modal/multi-

omic data. The field of study is typically termed multi-view learning Y. Yang and H. Wang

(2018). Multi-view learning encompasses a multitude of different approaches to tackling multi-

modal data; dimensionality reduction Mitra et al. (2020), matrix factorisation Serra et al. (2015),

deep learning approaches Zhao, Ding, and Fu (2017) and network based methods B. Wang

et al. (2014). Multi-view/multi-modal datasets are datasets comprised of collections of mod-

alities with distinct features, properties and statistics collected for each individual/entity in the

dataset. Each modality captures different aspects of an individual/entity. A common example

would be a dataset of animals containing both images and text descriptions. A biological

example would be a multi-omic cancer dataset containing genomic and transcriptomic data.

Common applications for multi-view learning include supervised prediction tasks (e.g. labelling

of entities based on image and text) or unsupervised clustering (e.g. cancer subtyping).

In this thesis, I focus on network-based approaches to incorporating multi-modal data for

community detection. My specific focus is on the construction of similarity networks from non-

network data i.e. data where the relationships between objects are not explicitly defined. A

prototypical example of a multi-view technique for similarity network construction is Similarity

Network Fusion (SNF) B. Wang et al. (2014), a method of incorporating multi-omic data to
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perform cancer subtyping. Network construction has the advantage over other multi-view

techniques in that they output a data structure that can be easily adapted to perform several

types of analysis Y. Yang and H. Wang (2018).

Multi-modal similarity integration methods for network construction can be broken into three

categories as shown in Figure 1.2; early, intermediate and late integration. Let Xi be the

data feature matrix, Si the pairwise similarity matrix and Gi be the similarity network for each

modality i.

Figure 1.2: Approaches to Similarity Integration in Multi-Modal Network Construction.
Methods can be classified as early, intermediate or late integration techniques where one of
the modality’s i) data features Xi, ii) pairwise similarities Si or iii) individual networks Gi are
integrated together in order to construct a similarity network G for the dataset.

Early integration combines the data features of the modalities. A typical approach to handle

data from multiple sources is to simply merge or join the data for each entity into a single

dataset and analyse a single data feature matrix. The preprocessing of the data prior to

merging can be quite complex but for the purposes of network construction a typical early

integration is to simply combine the individual modalities (after preprocessing). The pipeline

is comprised of a single combined data feature matrix X , a single pairwise similarity matrix S
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and final network G;

Xi−> X−> S−> G (1.8)

Intermediate integration seeks to combine the pairwise similarities of each modality before

constructing a network. For example in multi-omic data, it is often preferable to consider each

modality individually. The number of features in each modality can vary significantly, with some

modalities having an order of magnitude more features. When merging into a single feature

matrix, the (potentially) distinct information contained in each modality can be dominated

by the high number of features in certain modalities. An alternative approach is to compute

similarity on each data source individually and integrate later. A benefit to such an approach

is that different similarity measures can be applied to each modality individually. A common

example of intermediate integration is to simply take an average of the pairwise similarity

matrices S = 1
M ∑

M
i=1 Si (where M is the number of modalities) before constructing a final

network.

Xi−> Si−> S−> G (1.9)

Late integration seeks to construct an network for each individual modality and combine

the individual networks in some fashion. Similar to intermediate integration, late integration

benefits from processing each modality individually. By creating a network for each modality,

only the most important relationship and highly similar edges present in each modality are

retained. The sparsification process required in the construction of networks helps distil the

key relationships and pertinent information from each modality. An example of late integration

is Similarity Network Fusion (SNF) B. Wang et al. (2014) which combines KNN networks from

each modality in an non-linear process.

Xi−> Si−> Gi−> G (1.10)

Challenges in Evaluating Integration Methods

Late integration methods, such as SNF B. Wang et al. (2014), have seen extensive use in

biomedical subtyping, including areas such as COVID-19 Ahern et al. (2022), Alzheimer’s

Tong, Gray, Gao, Chen, and Rueckert (2017) and paediatric brain tumours Cavalli et al. (2017).

The original assessment of the method’s performance was conducted on cancer data from

the Cancer Genome Atlas (TCGA) Tomczak, Czerwińska, and Wiznerowicz (2015). Due to

a lack of ground truth data, the validity of the method was verified by comparing survival

curves and the number of significant genes within each cluster. Extensions to the method,

such as NEighborhood based Multi-Omics clustering (NEMO) Rappoport and Shamir (2019),

have also struggled with evaluation, and similarly relied on survival curve comparison and

significant gene count.
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One of the few studies that conducted a comparison between SNF and a simpler method,

such as mean similarity (average pairwise similarity across modalities), using ground truth

clusters found that the normalised mutual information (NMI) (see Eq. 1.5.2) performance of

SNF was consistently worse than mean similarity across a number of datasets Mitra et al.

(2020). It must be noted that this particular paper evaluated on clustering NMI performance

on embeddings produced from each integration method and did not examine network quality

or network based clustering. For example, instead of constructing a network from the mean

pairwise similarity matrix, they produced a low dimensional embedding. Another concern was

the choice of ground truth clusters for evaluation. While the ground truth subtypes of TCGA-

BRCA and TCGA-GBM datasets are well verified, the use of cancer stage as a ground truth

is questionable in datasets lacking accepted molecular subtypes. More concrete evidence is

required to show that the relative increase in complexity of SNF compared to simpler produces

a tangible benefit. A focused evaluation of integration methods on data with known ground

truths is needed. Furthermore, to our knowledge no study has evaluated the effect of SNF’s

diffusion process on the underlying structure of the network produced.

1.4 Partial Data

The phenomenon of incomplete data is well studied in biomedical data. Missing data is

commonplace Arslanturk et al. (2016); Molenberghs and Kenward (2007) and a plethora of

strategies and imputation techniques have been developed to handle incomplete data Sterne

et al. (2009); Wells et al. (2013), ranging from simple methods such as mean value imputa-

tion Graham (2009) to more complex methods such as multiple imputation Rubin (2018).

The focus of research efforts has primarily been been on item non-response or missing

values within features. While unit non-response, the absence of any features from a particular

individual, is recognised as a problem, data was typically uni-modal and such individuals

would not be included in any analysis. Care was needed to identify why an individual had no

recorded values Hall et al. (2019) but without any observed values such individuals could not

be considered for analysis. With the increasing availability of multi-modal datasets, unit non-

response and methods to handle individuals with a partially complete set of measurements

has increased in importance.

Typically, real world multi-modal data is only partially complete. Measurements are often

missing for entities in one or more modalities Flores et al. (2023); Voillet et al. (2016). In

this thesis, I refer to a dataset containing modalities with an unequal number of individuals

as partial data. Whether to include partially complete data is a challenging question. Data

analysis methods are typically developed with the expectation of complete data as an input

and while imputation methods can ensure a feature’s replaced missing values do not distort
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analyses, the imputation of an entire individual’s measurements is avoided in nearly all cases.

As a result, when analysing multi-modal data, datasets are restricted to the subset of entities

with a complete set of measurements in all modalities2. In general, the set of entities with

complete measurements is a fraction of the total set of entities included in a dataset. An

alternative approach is to restrict the set of modalities included in an analysis in order to

maximise the number of entities that can be included. In either case, data wastage is common

and large portions of a dataset, whose collection maybe have incurred a significant cost, is

not utilised.

There are many possible reasons for unequal data collection across modalities Hall et al.

(2019). There could be external factors such as budget constraints at the time of data col-

lection (funding is only available to sequence X individuals). Partial data could be due to

patient/individual time constraints (individual y can only attend 2 of the 3 evaluations). It could

be due human error and issues in data recording. Another common restriction are location

factors. For example, specialised equipment may be required to measure one modality and

only a subset of the data recording locations have that equipment.

Partial data can also be due to the particular characteristics of a patient/individual. For ex-

ample, only certain patients may be eligible for/undergo a particular test e.g. in an EHR

dataset, a patient with a broken foot will not typically be sent for an echocardiogram (ECG)

and, as a result, ECG data is unlikely to be available for patients without suspected heart

issues. Moreover, unequal data can be by design, different tests are often applied based

on age or severity of a condition. Many diagnostic tests for psychiatric conditions require a

specific level of language ability and different tests are used to diagnose depending on the

age of the individual Gotham, Risi, Pickles, and Lord (2007).

Another potential factor for unequal data collection may be socioeconomic. Availability for

testing may depend on ability to take/obtain time absent from work or ability to afford child-

care. Additionally the availability of specialised equipment may depend on the wealth of the

neighbourhood/city/region/country. For disease analysis in particular, this possibility is highly

significant as different racial/wealth groups may have different incident rates/subtypes of a

particular disease and the proportion of individuals with partially complete data may be higher

than wealthier individuals. This could lead to bias and imbalanced datasets Hall et al. (2019);

Nakagawa and Freckleton (2008).

2. It should be noted that a complete set of measurements might still include many occurrences of item non-
response and require traditional imputation techniques.
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Many papers have explored the inclusion of partially incomplete multi-modal data from a

methodological perspective S.-Y. Li et al. (2014); Xu et al. (2022), however, it is rare to see

incomplete data included in formal disease analysis. If partially complete data is to be included

in the analysis of a disease or condition, the reasons behind an individual’s incompleteness

are important to understand. Figure 1.3 provides an illustration of the types of partial data that

can occur.

If the data is partial at random, then it is unlikely that restricting analysis to fully complete

data will result in a biased dataset. On the other hand, including the partial data (assuming

our methods do not suffer a significant drop in performance) should not greatly affect the

conclusions of a clustering analysis but can increase the statistical power of a study. If the

data is not missing at random there are two possible scenarios i) the factors dictating if an

individuals data is complete or not are related to the clusters or subtypes within the data or

ii) the factors are unrelated to the cluster distribution. For example, suppose we have two

modalities and the only individuals missing from modality A are men and only individuals

absent from modality B are women. In scenario i) each subtype is comprised of individuals of

the same sex, in scenario ii) the subtypes will have a 50/50 split of sex.

In other words, i) the cluster distribution of data with partial information is significantly diver-

gent from the complete set of data or ii) the cluster distribution is identical to the complete set.

An analysis that restricts to the complete data in i) will add significant bias and fail to include

critical individuals. An analysis that restricts to the complete data in ii) will not diverge from the

true population.

Figure 1.3: Types of Partial Data in Multi-Modal Datasets This figure illustrates two
scenarios of partial data in multi-modal datasets: missing data either at random or based
on cluster membership. When measurement are missing based on cluster, only individuals
from cluster 1 (orange) do not have measurements in modality 3 (light green). In data partial
at random, there is no link between the cluster label and the partial data.
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In this thesis, I explore the effects of the including partial data on network structure. In Chapter

3, I evaluate the ability of integration methods to incorporate increasing levels of incomplete

data on synthetic generated data with known ground truth labels. I assess data both partial

at random and partial depending on cluster membership. In Chapter 4, I compare the clus-

tering performance of partial and complete versions of real world datasets: multi-omic cancer

tumours and a multi-modal dataset of individuals with autism spectrum disorder.

1.5 Clustering

In this work, I consider the creation of similarity networks with the aim of unsupervised detec-

tion of clusters within a dataset. In network science, this is commonly referred to as community

detection. While the particular problem can vary from application to application, the most

common setting in community detection is one where, a priori, both the number and size

of the clusters are unknown. To reflect this, I require adaptable methods that do not require

knowledge of the number of clusters but can detect both the number and size of each cluster.

In this thesis, by clustering I refer to disjoint or non fuzzy clustering where clusters do not

overlap and a node can only belong to a single cluster. Our interest is further limited to focus

on non-hierarchical methods. Hierarchical clusterings are rich in information but the evaluation

and comparison of different hierarchical clusterings is challenging. Hierarchical clustering

produces a tree representation. This tree is comprised of a number of levels where each

level contains different partitions of the nodes. This tree representation is typically called a

dendrogram. Dendrograms provide additional information over simple partitions — the simil-

arity between different clusters can be measured using their distance in the tree. However,

it is not simple to compare two different dendrograms. Measures typically used to asses

hierarchical clusterings are the cophenetic correlation coefficient and the Fowlkes-Mallows

index Fowlkes and Mallows (1983); Sokal and Rohlf (1962).

Cophenetic correlation is an internal measure that assesses the correlation between the

dendrogram distance of the clusters and the mean dissimilarity between the nodes in the

clusters. It does not facilitate external comparison to a ground truth dendrogram or direct

comparison between two dendrograms. Indirect comparison can be still be performed by

comparing the correlation coefficients of two dendrograms, yet this measure does not evaluate

the agreement between both dendrograms. The Fowlkes-Mallows index does enable the

comparison of two dendrograms. However, the index facilitates the selection of the fairest

partitions to compare the two clusterings. It does not compare the overall agreement between

the two hierarchical clusterings.
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To calculate the Fowlkes-Mallows index, both dendrograms are cut to obtain k clusters for

k = 2, ...,n− 1. For each k, the geometric mean of the precision and recall between the

two partitions (Bk) is computed. The optimal k identified using Bk allows us to select cuts

of the two dendrograms which has the highest agreement. Selecting the cuts to obtain k for

both dendrograms in fair manner is difficult (cutting at each level in the dendrogram will not

necessarily produce the correct sequence of number of clusters k = 2, ...,n−1). Furthermore,

while plotting Bk vs k can be visually informative, comparing the agreement of more than two

dendrograms is not simple — what if each pairwise comparison identifies a different k as

optimal?

Neither of the metrics introduced here facilitate direct comparison to a ground truth dendro-

gram. While comparison could be performed using "optimal" cuts of the dendrogram, i) select-

ing partitions for fair comparison is not trivial as discussed and ii) simply comparing partitions

does not compare their hierarchical information. In this work, I want to assess sparsification

methods for community detection. Without a clear method of evaluating dendrograms, hier-

archical clustering methods are not suitable for this task.

Numerous approaches have been developed to perform unsupervised clustering. Non net-

work based clustering methods such as K-means, Gaussian mixture models or DBSCAN are

typical choices Ester, Kriegel, Sander, and Xu (1996); MacQueen (1967); Reynolds (2009).

While in many applications these methods can be as accurate or even more accurate than

network based methods Murugesan, Cho, and Tortora (2021), my aim in this work is to

evaluate similarity network construction for community detection. Such methods do not accept

networks as input and cannot be used to evaluate the quality of the networks produced by

different sparsification methods.

A number of approaches have been developed for network based community detection in-

cluding optimisation, spectral, probabilistic and dynamic based methods Fortunato and Hric

(2016); Fortunato and Newman (2022); Lancichinetti and Fortunato (2009); Schaub, Delvenne,

Rosvall, and Lambiotte (2017). Perhaps the most studied approaches are optimisation al-

gorithms that aim to detect communities by optimising a criteria that measures how community-

like sets of nodes are. One of the most popular criteria is modularity maximisation Clauset,

Newman, and Moore (2004); M. E. J. Newman (2006a); Traag, Waltman, and van Eck (2019)

but other methods use criteria such as edge betweeness to define communities M. E. J. New-

man and Girvan (2004). The optimisation of such criteria in a network is a NP-hard problem

and many different approaches have been proposed to identify approximate solutions using

heuristics M. Chen, Kuzmin, and Szymanski (2014).
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A highly popular set of algorithms use the dynamics of random walks on the network to identify

communities. A key assumption in community detection is that clusters are more connected

internally than externally. A random walk on the network starting in a cluster is more likely

to visit nodes within a community than external nodes. The Walktrap algorithm uses short

random walks to identify such patterns Pons and Latapy (2006). Infomap is another dynamics

based method that assumes an infinitely long random walk on the network and uses the map

equation to identify an information criterion based solution Rosvall and Bergstrom (2008).

Probabilistic approaches assume a probabilistic model to describe the community structure

in the network and aim to infer community structure by fitting a generative model to the data

(network). The Stochastic Block Model (SBM) is by far the most used generative model. There

are several variants of the stochastic block model. The standard SBM introduced by Holland et

al Holland, Laskey, and Leinhardt (1983) and its degree corrected variant proposed by Karrer

and Newman Karrer and Newman (2011) both require the number of clusters or blocks to be

known a priori. One of the most significant enhancements was proposed by Peixoto Peixoto

(2019) with the microcanonical formulation that facilitates the selection of number of blocks

(B) by applying the principle of minimum description length to infer the optimal choice of B.

Finally, spectral based methods identify communities by performing a spectral decomposition.

There are several choices of matrices derived from the network; adjacency matrix, modularity

matrix M. E. J. Newman (2006b), Laplacian matrix von Luxburg (2007) and Bethe-hessian

Saade, Krzakala, and Zdeborová (2014). Following decomposition into the spectral space, a

non network based clustering algorithm is used to identify the clusters. A typical choice is

K-means clustering.

1.5.1 Clustering Methods

To evaluate our sparsified networks, a selection of different methods that take different ap-

proaches to community detection is required. A good similarity network should enable the

discovery of the underlying communities for a variety of clustering approaches. To reiterate,

in order to reflect real world scenarios, our community detection methods should identify the

number of clusters as well as the particular node partitions. The methods used in this work

are

• SBM — Minimum description length stochastic block model as implemented in graph-

tool. We use a non-nested model with degree correction.

• Leiden — Leiden modularity maximisation algorithm. The resolution parameter is se-

lected using event sampling and modularity maximisation.
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• Spectral — Spectral decomposition of the random walk Laplacian Lrw = I −D−1A

followed by K mean clustering using cosine similarity. The number of clusters are

selected using eigengap ratio heuristic.

Stochastic Block Model

We use the degree corrected microcanonical SBM proposed by Peixoto in Peixoto (2019). A

key assumption in probabilistic community detection is that the clusters or blocks define the

generation process of the network. The aim in stochastic block modelling is to decompose the

network into its "building blocks" where N nodes are partitioned into B blocks. As shown in

Peixoto (2018), the microcanonical formulation of the SBM is given by

P(b|A) = P(A|b)P(b)
P(A)

=
P(A|e,b)P(e|b)P(b)

P(A)
(1.11)

where A = {Ai j} is the adjacency matrix, b is the group membership vector of node i with

bi ∈ {1, . . . ,B} and e = {ers} is the matrix of edge counts between groups. The difference

in this microcanonical model to earlier formulations is the hard constraint that edge counts

between groups are exactly ers. Previous formulations constrained the average number of

edges between groups where fluctuations could occur between different samples.

A key advantage of this formulation is the ability to frame the posterior in accordance with in-

formation theory and automatically detect the number of clusters or blocks B. The description

length Σ of the microcanonical model is given by

Σ =− log2 P(A,e,b) (1.12)

=− log2 P(A|e,b)− log2 P(e,b). (1.13)

Σ assesses the asymptotic amount of information required to encode data A together with

model parameters e and b. The two terms can be thought of as i) the model evidence and

ii) a complexity penalty. These two terms together help prevent overfitting and allow the

identification of the number of blocks B. If the evidence for a particular block structure is

high, the posterior probability P(A|e,b) will increase. Any increase in model complexity due to

increasing the number of blocks must be accompanied by a sufficient increase in the fit to the

data. This penalty ensure the model does not become overly complex and overfit.

The microcanonical formulation can be extended to include a degree correction. Most net-

works have heterogeneous degree distributions and the degree corrected variant reduces the

chance of trivial decomposition of our network into blocks of nodes with similar degrees. As

Peixoto discusses in Peixoto (2019), degree corrected stochastic block models (DC-SBM)

generally provide a better fit but do introduce an additional set of parameters which increase
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the model complexity. The updated posterior is given by

P(A|b) = P(A|k,e,b)P(k|e,b)P(e|b) (1.14)

where k = {ki} = {∑ j Ai j} is the degree of node i. The model is fit using Markov Chain

Monte Carlo where model selection is performed by selecting the model with the minimum

description length. We make use of the python implementation in the graph-tool3 package

Peixoto (2014).

Leiden Modularity Maximisation

Modularity maximisation is one of the most widespread approaches to community detection

on networks. For a given grouping of nodes into clusters C, modularity is a measure of the

difference between the fraction of edges that exist within the groups compared to the fraction

of edges that would be expected to exist under an appropriate null model. Modularity Q is

given by

Q =
1

2m ∑
i, j
[Ai j− γPi j]δ (Ci,C j) (1.15)

where A is the adjacency matrix, m is the number of edges in the network, γ is the resolution

hyperparameter, Ci is the community node i belongs to, δ (Ci,C j) = 1 if nodes i and j belong

to the same cluster and P is the expected adjacency matrix under a null model. A typical

choice for null model is the configuration model where node degrees are assumed fixed and

edges are placed at random, resulting in expected number of edges Pi j =
kik j
2∗m under the null

model.

The modularity metric was introduced by Newman and Girvan in M. E. J. Newman and

Girvan (2004) to measure the quality of the clusters identified by their edge betweeness

clustering algorithm. The original definition of modularity was defined with γ=1. Methods to

maximise modularity quickly emerged. For example, a greedy optimisation approach Clauset

et al. (2004), a spectral approach using the leading eigenvectors of the modularity matrix

M. E. J. Newman (2006b) and approaches adapted to larger networks that use multiple levels

of scale of the network by merging communities Blondel, Guillaume, Lambiotte, and Lefebvre

(2008) (the so-called Louvain method due to the location of its authors).

The resolution parameter was introduced as a solution to the resolution limit of modularity

Fortunato and Barthélemy (2007). In larger networks, modularity optimisation has been shown

to be unable to detect more than
√

2m communities. This arises as a result of the number of

edges expected under the null model. The expected number of edges between two nodes

3. v2.45
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under the null model kik j
2m depends on the number of edges globally in the network m. Clusters

are local phenomena in large networks but the null model implicitly assumes that each node

can attach to any other node in the network. As the number of edges in a network increases,

the expected number of edges between nodes and, more importantly, between small sets of

nodes becomes vanishingly small. A single edge between clusters is seen as strong evidence

that two sets of nodes form a single cluster. As the number of edges increase, the size of the

set of nodes for which one single connecting edge constitutes strong evidence increases. As

a result, clusters below a certain size will not be separated. The modularity of joining the sets

of nodes together is higher than keeping the two separate Kumpula, Saramäki, Kaski, and

Kertész (2007). To overcome this limitation, the resolution parameter was introduced. This

allows the model to split such clusters by artificially increasing the number of edges expected

between node sets under the null model.

The resolution parameter controls the number and size of the predicted clusters. A lower

resolution parameter results in a fewer number of large clusters. A higher resolution parameter

causes a larger number of smaller clusters. One challenge with the resolution parameter is an

inability to handle clusters that vary significantly in size Peixoto (2021). Another challenge is

the selection of an appropriate resolution hyperparameter. The optimal parameter changes

from network to network and from application to application. The most popular approach

to resolution parameter selection is a simple hyperparameter search for the parameter than

results in a labelling with the highest computed modularity. There are difficulties, however, in

selecting a representative set or range of parameter values for the different cluster scales.

The resolution parameter is not linear in terms of cluster scale. Qualitatively, the possible

choices range from resolution parameter value which results in a single joined cluster con-

taining all nodes to a choice that results in a set of singletons with each node classified as

its own cluster. Yet, as shown in Jeub, Sporns, and Fortunato (2018), there is a very large

range of values that result in a large number of singletons and this range of values varies

from network to network. The qualitative properties do not change linearly with the resolution

parameter. There is the danger that a selected set of possible sample values will not cover

qualitatively different cluster ranges. Modularity maximisation across this range will result in

a poor choice of gamma as different cluster scales will not be evaluated. One solution would

be to evaluate a large sample of resolution scales. There are two disadvantages to such an

approach; high computation complexity and a significant possibility of overfitting. Jeub et al.

(2018) show an alternative process, which they term event sampling, that can be used to gain

a set of parameter samples that are qualitatively distinct without increasing the number of

gamma samples drastically.
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The key component of their approach is the use of the relative fraction of node pairs with less

edges than expected for any particular value of gamma as measure of cluster scale:

β (γ) =
∑(i, j)∈E−(y) |Ai j− γPi j|

∑(i, j),i̸= j |Ai j− γPi j|
(1.16)

where E−(γ) = {(i, j)|i ̸= j,Ai j− γPi j < 0} is the number of pairs of nodes with less edges

than expected under the null model. β (γ) is monotonically increasing for the γ values of

interest and we can sample γ by inverting β . Equally spaced β values should produce a set of

γ values that cover a representative set of qualitatively different cluster scales. They compare

their approach to both linear and logarithmic γ sampling and show that event sampling pro-

duces a far more representative range of values. One issue with the approach, as proposed

in their paper, is the number of possible events grows significantly in larger networks and

the inversion calculation increases significantly in computational complexity. We use a simple

subsampling process to estimate the beta curve in the inversion step rather than requiring a

complete calculation. There is a loss of accuracy in the estimation of the beta curve in range

of values where clusters split into singletons but, in general, the labellings produced by this

range of hyperparameter values are of little interest.

Modularity maximisation has suffered criticism and a number of issues with the clusterings

produced by maximisation methods have been identified. There is degeneracy in high modu-

larity partitions. Partitions that are qualitatively quite different in terms of size and number of

clusters have been shown to have similar modularity scores across a range of networks Good,

de Montjoye, and Clauset (2010). Indeed, high scoring modularity partitions offer no guarantee

of detection of true community structure. High scoring modularity partitions can be found

in random networks generated using the Erdos-Renyi process which contains no implanted

community structure Peixoto (2021). In the majority of networks, there is a plateau of high

scoring partitions where multiple instances of the same algorithm on the same network return

very different results Good et al. (2010). Coupled with the resolution limit, there are significant

concerns on the quality of modularity maximisation clustering. In spite of such concerns,

modularity maximisation has been shown to outperform other methods Z. Yang, Algesheimer,

and Tessone (2016) and have been used to great effect in a variety of applications.

In this work, we make use of the Leiden algorithm Traag et al. (2019), it improves upon the

Louvain algorithm. The Louvain algorithm has a tendency to produce badly connected or dis-

connected communities. The Leiden algorithm guarantees locally well-connected partitions. It

is very computationally efficient and can handle large networks. We make use of the python

implementation provided by the igraph4 package Csardi and Nepusz (2006).

4. v0.10.3
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Spectral Clustering

In spectral clustering, we perform a spectral decomposition of a matrix derived from the net-

work to reduce the dimensionality of our data and then cluster in the lower dimensional space

defined by a chosen number of eigenvectors ranked by their eigenvalues. The key parameters

involved in spectral clustering are the choice of dimensionality k (number of eigenvectors

to use) and the network affiliated matrix to be decomposed. Following decomposition and

dimensionality reduction, any vector based clustering method can be used to identify the

clusters but a common choice is K-Means clustering.

The key advantage of spectral clustering over other dimensionality reduction methods is the

eigengap heuristic. The eigengap heuristic allows us to automatically identify the number

of clusters (and eigenvectors) k. As described in von Luxburg (2007), if k clusters are well

separated from one another then the ratio of the k+1th and kth eigenvalue will be larger than

all other ratios. By selecting the largest eigengap, we should automatically detect the correct

number of clusters K. There are several choices of commonly used matrices in spectral

decomposition

• Pairwise Similarity (Affinity) matrix S

• Adjacency Matrix A

• Laplacian L = D−A

• Random Walk (left normalised) Laplacian Lrw = I−D−1A

• Symmetric (normalised) Laplacian Lsym = I−D−1/2AD−1/2

In this work, we perform spectral clustering on the random walk normalised Laplacian Lrw. As

discussed in von Luxburg (2007) the only difference between the two normalised Laplacians

is a numerical factor in the eigenvectors. Yet this difference can lead to numerical artifacts in

Lsym.

We use the eigengap ratio heuristic to select the number of dimensions and clusters K. In

general this is quite effective, however, if the clusters are not well separated i.e. the clustering

problem is quite noisy, then the eigengap heuristic is far less accurate Afzalan and Jazizadeh

(2019). No eigenvalue ratio will be significantly larger than the others and the k corresponding

to the true number of clusters may not be selected. To perform spectral clustering, we use the

python implementation of spectral clustering provided by the package spectralclusterer5

Q. Wang, Downey, Wan, Mansfield, and Moreno (2018).

5. v0.2.16
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1.5.2 Clustering Evaluation

It is a difficult task to assess the performance of clustering algorithms. Particularly when,

a priori, the number of clusters Nc is unknown. There are two possible errors that a good

cluster evaluation score must account for; i) errors in the number of predicted clusters —

is a prediction that underestimates Nc better than one that overestimates Nc? and ii) more

intuitive errors such as assigning a node to the incorrect cluster. A challenge in this task is

that cluster labels between the ground truth and predicted cluster labellings have no guarantee

of matching. For example, cluster 1 in y may be labelled as cluster 2 in ŷ. As a result, a simple

measure such as accuracy is not available for cluster evaluation. There are two approaches

to overcoming these differences in cluster labels: i) compare all pairs of entities and count

pairs that match in both cluster labellings and differ in both and ii) use an information theory

approach by evaluating individual and joint entropies.

In this section, I will describe the most common measures of cluster evaluation, how they are

computed and finally give an illustrative example showing how they evaluate in toy scenarios.

• ARI — Adjusted Rand Index,

• AMI — Adjusted Mutual Information,

• V-Measure — Harmonic mean of Homogeneity and Completeness of two clustering

labels.

Adjusted Rand Index

The Rand Index (RI) was introduced in Rand (1971) and evaluates two labellings by compar-

ing pairs of entities in both labellings. The (unadjusted) Rand Index for labellings y and ŷ is

given by

RI(y, ŷ) =
a+d(N

2

) =
a+d

a+b+ c+d
(1.17)

where a, b, c and d denote the number of pairs in agreement or disagreement between the two

labellings as outlined in Table 1.1. The Rand Index is proportional to the number of samples

whose label agree in both or disagree in both y and ŷ.

The Rand Index accurately reflects the level of agreement between two labellings in scenarios

with few classes. However, as the number of classes increase the number of elements who

are in different classes in both y and ŷ (d) will increase. Consider two completely random

labellings, the random labelling with a larger number of classes will have a higher RI between

it and the ground truth than random labellings with fewer classes. The baseline RI i.e. RI(y, ŷ)

where ŷ is a random labelling, changes based on the number of clusters in both y and ŷ.

The increase results from the number of pairs in different clusters in both labellings d. The
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Partition ŷ

y
Pair in

same cluster
Pair in

different cluster

Pair in
same cluster

a b

Pair in
different cluster

c d

Table 1.1: Contingency table for comparing pairs of nodes in partitions y and ŷ.

more clusters there are in both the labellings the higher the chance that two entities will be

in different clusters in both labellings. To correct for this natural increase in RI and establish

a comparable baseline score for all labellings i.e. score 0 for random labellings, the RI is

corrected for chance. Typically a permutation model is assumed; the number and size of

clusters are assumed fixed and labels are randomly assigned by shuffling elements between

clusters. The ARI was introduced in Hubert and Arabie (1985) and is given by

ARI =
RI−E(RI)

maxRI−E(RI)
(1.18)

=

(N
2

)
(a+d)− [(a+b)(a+ c)+(c+d)(b+d)](N
2

)2− [(a+b)(a+ c)+(c+d)(b+d)]
(1.19)

This form was first presented in Steinley (2004). The Adjusted Rand Index ranges from [-1, 1]

but a random labelling scores 0 and the score does not increase when the number of clusters

increase.

Adjusted Mutual Information

The adjusted mutual information (AMI) is an information theory based measure based on the

joint and individual entropies of the cluster labellings. The mutual information (MI) measures

the agreement between two labellings. A common scoring function used in literature is the

normalised version (NMI) but more recently the adjusted mutual information has emerged

due its to correct for chance Vinh, Epps, and Bailey (2009).

The entropy for a labelling y is given by

H(y) =−
n

∑
r=1

p(y=r) log p(y=r) (1.20)

where n is the number of classes in y and p(y=r) = |y=r|/N is probability that an element in

y picked at random is class r.
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The mutual information for labellings y and ŷ is given by

MI(y, ŷ) =
n

∑
r=1

m

∑
s=1

p(y=r, ŷ=s) log
(

p(y=r, ŷ=s)
p(y=r)p(ŷ=s)

)
where m is the number of classes in ŷ

As discussed above, typically the mutual information is normalised to facilitate comparison. It

is given by

NMI(y, ŷ) =
MI(y, ŷ)

fmean(H(y),H(ŷ))

where fmean is a generalised mean function of the entropies of each labelling. Common

choices are the arithmetic or geometric mean but different selections are made depending on

the particular application. Similar to the rand index both mutual information and the normalised

mutual information are not adjusted for chance and the values increase as the number of

classes increase. Similar to ARI, a permutation model is assumed in the correction for chance.

The AMI is given by

AMI =
MI−E(MI)

fmean(H(y),H(ŷ))−E(MI)
(1.21)

where E(MI) is the expected mutual information assuming a hypergeometric distribution and

permutation model (full derivation can be found in Vinh et al. (2009)). In this work, we use the

arithmetic mean fmean(H(y),H(ŷ)) = (H(y)+H(ŷ))/2 but as described above other choices

are commonly encountered depending on the application at hand.

V-Measure

The V-measure is a conditional entropy based cluster evaluation score Rosenberg and Hirschberg

(2007). It is based around two metrics of desirable properties in any cluster labelling

• Homogeneity (H) — h(y, ŷ) = 1− H(y|ŷ)
H(y) is 1 if all ŷ clusters contain only data points

which are members of a single y class.

• Completeness (C) — h(y, ŷ) = 1− H(ŷ|y)
H(ŷ) is 1 if all members of any given y class are

data points in the same cluster in ŷ.

The V-measure is the harmonic mean of the H and C. Typically, an additional parameter β

allows the weighting of the V-measure towards homogeneity or completeness depending on

which property is desired to constitute a "good" labelling.

V (y, ŷ) =
(1−β )∗homogeneity∗ completeness

β ∗homogeneity+ completeness
(1.22)
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For β = 1, the V-measure is identical to the normalised mutual information (normalised with

the arithmetic average of two entropies). As described in Section 1.5.2, the normalised mutual

information does not account for the natural increase in mutual information that occurs when

more clusters are included in a labelling. As an example, assume y has 3 clusters. A labelling

ŷ containing one single cluster e.g [1,1, ...,1] has a completeness score of 1 and homogeneity

0. A labelling ŷ containing N individual clusters [1,2, ..,N] has homogeneity 1. However, unlike

the labelling with one single cluster, it does not have completeness 0 and so does not have

V-measure 0. This is due to the increase in entropy that arises from the increased number of

clusters.

As a result of this natural increase with increased number of clusters, the V-measure is a

poorer choice for evaluation than adjusted measures such as AMI and ARI. The conditional

entropies do still have use. The H and C quantities assist greatly with explainability. They

provide qualitative insight when comparing two clustering with similar ARI. Differences in ho-

mogeneity or completeness help understand the behaviour in any particular pair of labellings.

Clustering Score properties

As discussed in Section 1.5.2, there are two possible errors that can arise in cluster evaluation;

incorrect prediction of cluster labels and incorrect prediction of the number of clusters. The

cluster scoring functions take very different approaches to evaluate labellings but it not clear

how the different types of errors affect the different cluster scoring functions. To provide more

intuition on how different scores are affected by such errors, we conduct a simple experiment.

We generate a toy example of 150 nodes split into 3 equal clusters. Labellings with the two

error types are generated by i) swapping cluster labels to obtain incorrect classification and ii)

splitting clusters while keeping the nodes in each sub-cluster homogeneous i.e. all nodes in

each sub-cluster come from the same cluster in the original labelling.

Figure 1.4 shows the effect of two error types on ARI, AMI, Homogeneity (H) and Complete-

ness (C). Nodes are grouped by their predicted cluster in ŷ and coloured by their original

cluster in y. A KNN network (K = 5) has been generated for visualisation purposes. As we

can see, ARI and AMI respond differently to different errors types. Figure 1.4A shows the

effect of introducing 6%, 10%, 22% and 30% of incorrectly labelled nodes. We can see AMI,

ARI, H and C all experience equivalent drops in performance. It is notable that 6% incorrectly

labelled nodes result in a ARI of 0.83 compared to an accuracy of 94%.



1.5. Clustering 29

There is a noticeable divergence in behaviour in Figure 1.4B. Figure 1.4B shows the effect

of splitting clusters into 4, 5, 9 and 15 sub-clusters respectively. The ARI decreases far more

rapidly than AMI. Homogeneous but incorrectly split clusters are scored far worse by ARI than

AMI. This drop is likely due to the correction for chance in ARI. It punishes differences in the

number of clusters far more than the entropy based measure. The AMI is likely not as affected

due to the high homogeneity within the clusters.

Evaluating performance per cluster

In the case of clusters of different sizes, problems in cluster evaluation arise similar to those

that occur when assessing unbalanced labels in supervised prediction problems. The majority

of nodes are contained in the largest clusters. Suppose a method is very good at detecting

large clusters but very poor at detecting smaller clusters. This method will consistently score

highly when evaluated using the metrics proposed in Section 1.5.2. Conversely a method

that accurately identifies the smaller clusters but splits or fails to detect the larger clusters

will consistently score lower using these metrics than methods that detects large clusters. In

settings such as disease subtyping, it is common to encounter large homogeneous cohorts i.e.

large clusters, mixed with smaller subtypes that are less studied and the targets of interest.

A method that accurately identifies the known larger group is of less use within subtyping

applications than methods that can accurately detect smaller subgroups.

How to obtain a measure invariant to class imbalances (differing cluster sizes)? One

alternative method of assessing the quality of the clustering labels (when ground truth labels

are known) is to identify the best matching predicted cluster for each ground truth cluster.

The prediction of each ground cluster can then be considered to be independent binary

prediction problems. Measures that account for class imbalances such as the F1-score or

balanced accuracy can be used to evaluate how well each individual ground truth cluster is

predicted. The mean score over all ground truth clusters provides a metric that accounts for

the differences in cluster size. Algorithm 1 outlines the process of calculating a per cluster

score s for a proposed set of clusters ŷ.
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Algorithm 1 Per Cluster Score for scoring function S
for yi in y do ▷ Loop over labels in y

bi← CreateBinaryVector(y, li) ▷ Create binary vector based on
target label li

ŷ j← argmax j yi∩ ŷ j ▷ Find best matching cluster in ŷ
b̂ j← CreateBinaryVector(ŷ, l̂ j) ▷ Create binary vector based on

label of best matching cluster l̂ j

si← S(b̂ j,bi)
end for
s← 1

nc ∑
nc
i=1 si ▷ nc is total number of clusters in y

1.5.3 Cluster Quality

A central facet to all of the above scoring functions is the assumption that ground truth

labels are available. However, a far more common scenario encountered when performing

community detection is an unsupervised setting where true cluster labels are unavailable. The

metrics proposed in Section 1.5.2 cannot be computed without ground truth labels. Alternative

approaches are required. A number of different metrics or heuristics have been developed

to assess the internal quality of proposed clusters without requiring comparison to external

ground truth labels. Both network and non-network based metrics can be used. Examples of

non network metrics commonly encountered are the Silhouette Coefficient Rousseeuw (1987)

or Davies–Bouldin index Davies and Bouldin (1979) which make use of inter cluster distances

in the feature space to evaluate the quality of a cluster. These methods rely on the accuracy

of the selected distance metric and are not easily interpreted.

In this thesis, I am interested in network based cluster quality scores. As described in Section

1.5.1, a central assumption of community detection in networks is that the ground truth com-

munities have higher intra-cluster connectivity than inter cluster connectivity. The majority of

internal cluster metrics evaluate how distinct clusters (sets of nodes) are from the surrounding

neighbourhoods in the network. A number of measures have been proposed and evaluated

for their use in the identification of communities.

In J. Yang and Leskovec (2012), Yang and Leskovec conducted an extensive review of network

cluster scoring functions that do not require knowledge of ground truth labels. They evaluate

different internal cluster functions on an extensive set of naturally occurring networks with

known ground truth communities. They define a set of community goodness metrics that

measure the essence of what good communities are considered to be — well separated

from the wider network, compact and internally well connected. Cluster scoring functions are

ranked based on their community goodness metrics and how they evaluate perturbations in
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the connectivity of ground truth communities. A subset of representative scoring functions

are identified from correlations in cluster scores. Unlike Yang and Leskovec, we are not

evaluating clusters on naturally occurring networks. We want to evaluate both the performance

of clustering algorithms and the edge structure introduced by different similarity network

construction processes. Both the quality of community goodness metrics and the cluster

scoring functions of ground truth clusters and predicted clusters are likely to change. In

this thesis, I make use of the three best performing cluster scoring functions; modularity,

conductance and triad participation ratio (TPR) along with three key community goodness

metrics; separability, density and clustering coefficient to evaluate cluster labellings.

The three cluster scoring functions f (S) and three community goodness metrics g(S) for a set

of nodes S in an undirected graph G(V,E) with n = |V | nodes and m = |E| edges are given

by

• Modularity — as shown in (1.15) with γ = 1.

• Conductance — f (S) = cs
2ms+cs

is the fraction of total edge volume that points outside

the cluster. Lower is values imply a more community like set S.

• Triad Participation Ratio (TPR) — The TPR

f (S) =
|{u : u ∈ S,{(v,w) : v,w ∈ S,(u,v) ∈ E,(u,w) ∈ E,(v,w) ∈ E} ̸= /0}|

ns

is the fraction of nodes in S that belong in a triad.

• Separability — g(S) = ms
cs

is the ratio of internal and external edges. It assesses how

well separated a community is from the rest of the network.

• Clustering Coefficient (CC) — The CC for vertex v is

Cv =
2|{(u,w) : u,w ∈ N(v),u,w ∈ S,(u,w) ∈ E}|

kv(kv−1)
.

It measures the number of links between vertices in a node’s neighbourhood divided

by the total possible links that could exist between them. The average CC for a set S is

g(S) =
1
nS

∑
v∈S

Cv.
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• Density — g(S) = 2ms
ns(ns−1) is the ratio between the number of edges in the subgraph S

and the maximum number of edges that could exist.

where cS = |{(v,w) : v ∈ S,w /∈ S}| the number of edges from S to the rest of the graph G, nS

is the number of nodes in S, mS is the number of edges in S, kv is the degree of vertex v and

N(v) = {w : w ∈ G,(v,w) ∈ E} is the set of neighbours of vertex v.

1.5.4 Consensus

An alternative for assessing the internal quality of a clustering, especially in the absence

of ground truth labels, involves examining the consistency and agreement across diverse

clustering algorithms. Each clustering algorithm optimises for distinct community qualities

within a network. Conversely, a network with a well-embedded community structure should

be identifiable by all methods. Assuming that a set of clustering methods is equally accurate

(which may not necessarily be true), a strong consensus should exist among the labels

produced by these algorithms. A set of clustering algorithms with high consensus is less

likely to contain random noise and be overfitted. We can be confident that the algorithms have

detected the true embedded network structure.

Consensus can also be used to evaluate the quality of networks produced by sparsifica-

tion methods. When comparing two network sparsification methods, the level of agreement

between algorithms can serve as a decisive criterion. Strong agreement implies a clearly

defined community structure and a lower signal-to-noise ratio in the network. A network con-

struction method detectable by multiple clustering algorithms is more adaptable and valuable

than one optimised for a specific approach.

To evaluate the agreement between algorithms, the methods proposed in Section 1.5.2 are

all suitable. Adjusted Rand Index (ARI), Adjusted Mutual Information (AMI), and V-measure

(Normalized Mutual Information, NMI) are symmetric and do not depend on either of the

input labellings being true labellings. An exception exists for the measures of homogeneity

and completeness. Each is the antithesis of the other: H(y, ŷ) =C(ŷ,y). A significant portion

of their interpretability is lost when not comparing a predicted labelling to a ground truth. If

one of the methods is fixed and considered the ’ground-truth’ for purposes of comparison,

the measures of completeness and homogeneity can still be used to compare the type of

agreement between the two algorithms.

It must be noted that here we define clustering consensus as the agreement between cluster

labellings produced by different algorithms applied to a single network. The term ’clustering

consensus’ is also used in the context of creating a consensus matrix or consensus network

from a set of cluster labellings and performing a final clustering on the consensus matrix/entity
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Lancichinetti and Fortunato (2012); Monti, Tamayo, Mesirov, and Golub (2003). The final

labelling is often more robust to noise, more stable, and has been shown to be more accurate

in certain scenarios. Indeed, this form of consensus clustering has been utilised extensively

in single-cell RNA cell type detection Kiselev et al. (2017) as well as cancer subtype detection

Brannon et al. (2010); C. Wang, Machiraju, and Huang (2014). In this work, it is of more

interest to identify alternative signals for community detectability that do not require a ground

truth rather than producing cluster predictions with higher stability.

1.6 Thesis Overview

The aim of this thesis is to evaluate similarity network construction in both uni-modal and multi-

modal datasets, focusing on the impact of components of the similarity network construction

pipeline on community detection performance. Specifically we seek to answer the following

research questions:

• Defining Network Structure from Pairwise Similarity

– What criteria or threshold should be used to determine when a similarity is strong

enough to represent a relationship (or edge) in a network?

– How does the choice of sparsification technique, such as thresholding or K-

nearest neighbors (KNN), influence the structure of the resulting network?

– Which sparsification method is optimal for constructing networks specifically for

the task of community detection?

• Integrating Multi-Modal Data

– How should different modalities (e.g., genomic, proteomic data) be integrated

when constructing similarity networks?

– Do complex multi-modal integration methods such as Similarity Network Fusion

offer benefits over simpler approaches (e.g., mean similarity) in terms of com-

munity detection performance?

– How does the choice of integration method affect the structure and quality of the

resulting network?

• Incorporating Partially Complete Data

– Can partially complete data (both random and non-random) be incorporated into

the network construction process?

– What is the effect of partial data, particularly non-random missingness, on the

structure and quality of the network?

– Do certain network construction methods perform better than others when deal-

ing with incomplete data?
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A key challenge in the evaluation of similarity network construction is the lack of datasets

with embedded communities and ground truth labels. To facilitate accurate evaluation of the

impact of network structure, I develop a data generation framework with a suite of various

data distributions, cluster compositions, and relationships across modalities. The structure of

the thesis is as follows:

• In Chapter 2, I evaluate common sparsification methods, such as threshold and k-

nearest neighbour networks, on a representative set of network-based clustering al-

gorithms. I use multiple instances of a set of generated data, comprised of represent-

ative cluster and data distributions, to measure clustering performance. I examine the

sensitivity of sparsification methods to key hyperparameters in both performance and

changes in network structure.

• In Chapter 3, I extend my assessment to similarity integration methods on multi-modal

data. I evaluate a variety of early, intermediate, and late integration approaches, such

as mean similarity, SNF, and NEMO. I explore different modality configurations to

identify the strengths and weaknesses of various methods. Additionally, I examine the

sensitivity of methods to an increasing number of modalities. The ability of methods

to handle partially complete data is evaluated in two scenarios: when individuals are

absent at random from a modality and when targeted clusters are absent in particular

modalities.

• In Chapter 4, I reinforce my findings on two biomedical datasets. I explore cancer

subtyping on multi-omic data from the Cancer Genome Atlas (TCGA) Tomczak et al.

(2015) and differentiate individuals with Autism Spectrum Disorder (ASD) from non-

ASD siblings within the Simons Simplex Collection (SSC) Fischbach and Lord (2010).

Both datasets are representative of the challenges in biomedical multi-modal data with

partially complete modalities, high variance in dimensionality across modalities, and

unique distributions. I evaluate similarity integration methods on complete and partial

versions of the TCGA and SSC data. Furthermore, I evaluate the predictability of the

discovered clusters and illustrate factors critical to cluster membership.

I conclude with a discussion of the most important theoretical and empirical contributions of

the thesis and point out directions for future research.



Chapter 2

Similarity Network Sparsification

2.1 Introduction

Network science and the analysis of network data has grown significantly in popularity in

recent years. Two developments have been notable. Firstly, there has been a substantial

increase in the availability and utilisation of biological, chemical, and biomedical data. These

datasets often exhibit complex relational structures, making them well-suited for traditional

network science tasks such as community detection and network robustness analysis. Secon-

dly, there has been a breakthrough in the development of graph representational learning

techniques, network embeddings, and graph neural networks (GNNs). These advancements

have revolutionised the analysis of network data by enabling the application of machine

learning algorithms to networks, demonstrating remarkable capabilities in tasks such as node

classification, link prediction, and graph-level prediction W. Hamilton, Ying, and Leskovec

(2017); M. M. Li, Huang, and Zitnik (2022). In many applications, data is inherently relational

and a network representation occurs quite naturally; social networks, citation networks and

protein-protein interaction networks. More commonly, however, the construction of a network

representation from properties of the data is not obvious and network analysis methods are

unavailable. Fortunately, there are ways of constructing networks in such settings and by far

the most commonly used method of creating a network representation from non-relational

data is through a similarity network.

A similarity network is a network where a set of individuals/entities (referred to as nodes or

vertices) are connected to other nodes based on their shared pairwise similarity (calculated

using some metric). Connections (known as edges) are included or excluded using some

criteria; for example, a threshold value or desired number of neighbours. Similarity networks

are constructed through a two step process. Firstly, the pairwise similarity between all nodes

is calculated using a similarity measure. Secondly, a network is created by adding edges

between nodes with the highest similarity using a particular selection strategy. The most

common methods for selecting edges are using a threshold i.e. edges with a similarity value

above the threshold are added or by creating a K-Nearest Neighbour (KNN) graph i.e. add

the top K highest similarity edges for each node. It is important to note we can also consider

similarity network construction through the lens of network sparsification where edges are

36
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removed according to their pairwise similarity so only the highest similarity edges are re-

tained. Many different approaches can be taken when estimating similarity or affinity between

entities and are often domain specific, for example, calculating protein similarity based on

their structural alignment Valavanis, Spyrou, and Nikita (2010) or estimating drug similarity

based on their molecular structure or induced side effects Huang et al. (2021). The selection

of metric/kernel/similarity function is essential to ensuring that the resulting network accurately

captures relationships within the data.

Similarity networks have seen significant use across many biomedical applications. For ex-

ample, the detection of cancer subtypes in multi-omic data B. Wang et al. (2014) and cell type

discovery in Single Cell RNA seq data Hao et al. (2021); Kiselev, Andrews, and Hemberg

(2019). They have also been used in to better understand disease pathways Y. Chen, Zhang,

Zhang, and Xu (2015), novel subtype discovery with patient networks Pai et al. (2019) and

in smartphone sensing and activity recognition applications Lane et al. (2014). While simil-

arity networks are consistently created and utilised across a wide variety of applications, the

process of constructing or sparsifying a network from pairwise similarity scores is not well

understood von Luxburg (2007).

The effect of network construction approach is significant. Different approaches result in net-

works with significant divergences in network structure. In traditional networks, the structure

is reflective of the data and the analysis of what type of network arises; scale free, small

world, etc informs us about relationships within the data. By contrast with similarity networks,

significantly divergent networks can arise from identical input data. Such similarity networks

are still insightful but the choice of construction method is not inherent. A user must make

decisions on the density, the number of edges and the process for adding edges.

Such challenges do not exist in naturally arising networks. For example, a citation network

only has an edge if one paper cites another and there is very little ambiguity on whether such

a citation exists. In similarity construction, an adjustment to the similarity threshold can add

or remove an edge from the network. Von Luxburg discusses the most common approaches

taken when constructing a network in von Luxburg (2007) but highlights that there are no

guiding principles for the choice of graph hyperparameters when selecting how sparse a

network should be. In Zahoránszky-Kőhalmi et al. (2016), Zahoránszky-Kőhalmi et al. show

the effect of choice of threshold on a graph property — local clustering coefficient but to my

knowledge no body of work has explored the effect of sparsification on common network

problems such as community detection.
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In this chapter, I demonstrate the effect of choice of sparsification method on community

detection performance. A challenge in the evaluation of network construction is the lack of

datasets with known ground truth community structure and consistent data properties. To

overcome this, I use multiple instances of synthetic data to allow both a graph hyperparameter

search and improved estimation of the effect of five common sparsification methods. I evaluate

several network community detection methods across a range of different cluster settings.

Section 2.2 describes the network sparsification methods evaluated. Section 2.3 describes the

different synthetic data distributions generated and in Section 2.4 I discuss the experiments

undertaken and the arising results.

2.2 Similarity Networks

In this chapter, I want to evaluate the quality of the network produced by different sparsification

methods, specifically when applied to community detection. A key consideration in similar-

ity network construction is the selection of metric and the calculation of similarity between

individuals. A discussion on the importance of similarity metric selection can be found in

Section 1.2. In the discussion of sparsification methods provided here, I am assuming for

any application we can identify a similarity metric that ranks relationships between individuals

accurately i.e. high similarity scores indicate a strong relationship between individuals that

should be included in the network and low similarity scores indicate a weak relationship

between individuals that should be excluded. Our focus is on evaluating the edge selection

process — sparsification.

Different sparsification methods prioritise different types of connections. We want to evaluate a

range of approaches. The two most popular approaches to sparsification are thresholding and

K-Nearest Neighbour (KNN) sparsification. Both have seen extensive use across numerous

applications. As discussed in Section 1.2, a key improvement on ε-thresholding is the use

of adaptive and dynamic thresholds for each node i. KNN can be considered a method

of identifying dynamic thresholds by setting each εi as the similarity to node i’s K nearest

neighbour. However, an ideal approach to dynamic thresholding would take in account the

local density in a nodes neighbourhood. We propose two methods of selecting a dynamic

threshold by adapting the K assigned to each node in KNN sparsification based on its local

average distance using a linear map (Linear Skewed KNN) and logarithmic map (Log-Skewed

KNN).

These different approaches result in networks with very different characteristics. My aim in

this chapter is to evaluate and identify which characteristics are most beneficial in the specific

context of community detection. I consider five sparsification methods
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• Threshold — Select a percentile value t. Only pairwise similarity scores above this

value are retained as edges.

• K-Nearest Neighbour — Select a number of neighbours K. For each entity the top K

pairwise similarity scores are retained as edges.

• Combined — A combination of the prior two methods; Select K and t as above.

Typically lower values for both are chosen.

• Linear-Skewed KNN — Select the max number of neighbours K. Scale the number of

neighbours based on local density.

• Log-Skewed KNN — Similar to above. Select the max number of neighbours K. Scale

the number of neighbours based on local density using a log scale (see Section 2.2.4).

Figure 2.1: Example Sparsification Methods on a Two-Dimensional Mixture of Gaussi-
ans; A-Data, B-KNN, C-Threshold, D-Combined, E-Linear Skewed KNN, F-Log Skewed KNN.
All networks have a density of 0.02, nodes are coloured by cluster membership and node size
is scaled by node degree (number of edges). We can see in the Threshold networks (C & D)
the large clusters are far denser. C highlights the issue of isolated nodes while B highlights
the significant increase in edges less dense areas of the feature space receive using a KNN.
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2.2.1 Threshold Network

Perhaps the most intuitive method for selecting edges to retain in the network is to make

use of a cutoff and remove all edges below a certain similarity value. It is common to apply

this criteria when a metric is interpretable. For example, a common filtration criteria is to

remove edges below a Pearson correlation value (0.7 is a common cutoff). This approach

is less suited to unnormalised and less interpretable metrics — a sensible threshold value

for euclidean distance is far less obvious and will depend entirely on the dataset. A metric

invariant approach is to consider the distribution of pairwise distance values in the data and

retain only the top x% closest values as edges e.g. find the 99th percentile value and remove

all edges with a similarity below this cutoff. While selecting a percentile can affect comparisons

between different applications/datasets (the 99% correlation value could be 0.7 in one dataset

and 0.8 in another) it provides an interpretable value for metrics like the euclidean distance

that can vary significantly from one dataset to another.

The threshold approach to sparsification is a global evaluator. The entire distribution of pair-

wise distances is examined and only the closest connections within a dataset are retained.

A key aim in similarity network construction is the removal of uninformative or dissimilar

connections. Assuming our metric is well chosen, the computed similarity will correspond

to our expected understanding of similarity within a particular application i.e. it will rank unin-

formative connections as far apart and informative connections as close together. For example

in a patient network, a good similarity metric will always evaluate the similarity between two

individuals with the same condition as "closer" than two individuals without. It should be noted

that assuming the we have selected a good metric is a significant assumption. The quality or

suitability of the metric depends on the distributions within the underlying data. If only features

that do not differentiate between conditions are included, it not possible for similarity metric to

compute higher similarity between individuals of the same condition.

An essential decision in network construction is the choice of metric but assume for the

moment that our chosen metric is accurate and ranks similarity between nodes as expected

for a particular application. An issue still arises when there are clusters of different densities

within the data. Returning to our patient similarity example, suppose we have two condi-

tions; i) A homogeneous condition with highly similar individuals (condition A) and ii) a more

heterogeneous condition where the similarity between individuals with the heterogeneous

condition is not high as the similarity between individuals with the homogeneous condition

(condition B). Furthermore, assume as a group, individuals with condition B are consistently

more similar to one another than to the individuals with condition A. The measured similarity

within group B will be low compared to the similarity within group A. Yet the within group B

similarity will be higher than the similarity between group A and B. If a global ranking approach
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such as thresholding is applied, there are a number of cutoffs for which no connections

within group B (the heterogeneous group) will be included as a result of its lower density.

Group A (the homogeneous condition) will form a more dense, highly connected group with

high similarity values between individuals. While this is an extreme example, the problem of

including clusters with differing densities in the same graph is commonly encountered.

Figure 2.1 shows an example of a Threshold network. In Figure 2.1C, there are several dense

clusters surrounded by isolated nodes. Many of the nodes in the less dense portions of

the data have one or even no edges. These isolated nodes introduce a significant problem

— there is no information in the network on how they relate to other nodes. In this two

dimensional example, it is clear visually which clusters the isolated nodes are closest to

but any network based clustering method will not have access to this information following

sparsification and most methods will struggle to correctly classify these nodes. In order to add

connections to these outlying nodes and include them in a larger connected component, the

selected threshold would have to be increased and edges with weaker justification would be

included in the network. It may be that the increase in density required to include isolated

nodes will increase the level of noise in the network and render the previously detectable

clusters indistinguishable from one another before the outlying nodes are included in the

largest component of the network.

2.2.2 K-Nearest Neighbour Network

In contrast to the global threshold approach, K-Nearest Neighbour (KNN) networks can be

considered a local approach to network construction. Knowledge of the entire pairwise sim-

ilarity distribution is not needed to sparsify edges for a particular node. For each node, we

select the top K most similar nodes and remove connections to all other nodes. As a result,

each node will be of degree K at minimum. This guarantees areas of lower densities will

have local information included in the network. Nodes are guaranteed K connections and so

problems associated with threshold networks such as isolated nodes cannot occur. A common

criteria used to detect communities in networks is cluster assortativity; connections within a

clusters are more likely than connections outside a cluster. The KNN network guarantees that

all nodes in a network receive a minimum number of connections. If true communities exist,

the KNN should result in an assortative pattern. Figure 2.1B highlights the effect of the KNN

approach. All nodes, even those in the less dense areas of the network, receive connections.
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There are two possible problems that can still arise. We might under sample in dense regions

of the data space where there are a large number of highly similar nodes (the node degree

in the larger clusters is much smaller for Figure 2.1B vs 2.1C) or we might over sample

less dense regions and include spurious or outlier connections that do not reflect the true

community structure. The inclusion of connections to outlier nodes is of particular concern.

Outliers are nodes that are truly remote and unlike all others, for example a misdiagnosed

patient in a collection of patients with a particular condition. This individual might be very

dissimilar to all other individuals in a cohort but a KNN network will guarantee it receives at

least K connections. By contrast, in a threshold network we might identify this individual as

an outlier (the node will have degree 0 and be dissimilar to all other nodes). The trade-off for

a guarantee of at least K edges for all nodes is the inclusion of spurious edges or edges with

weak evidence. An example of this type of outlier node is visible in Figure 2.1. The right most

node in all panels is isolated and remote. It would be quite reasonable to label this node as an

outlier but in the KNN network it is guaranteed K connections drawing it into the network. A

potential benefit of including outliers is more complete coverage of the possible feature space.

With the collection of more data, we might observe more entities in this outlier region of the

feature space. One potential risk in similarity network construction is that only the most similar

patients have edges in the network.

2.2.3 Combined Network

As discussed above, the threshold network and the K-nearest neighbour networks can be

thought to encapsulate global and local information respectively. Assuming our metric meas-

ures similarity effectively enough (i.e. is optimal for the particular application) then these

two sources of information should be complementary; the closest connections locally should

accurately capture the community structure in less dense areas while the threshold network

will prioritise the most similar connections in the network as a whole. Assuming a well defined

metric, the global similarity should be prioritised as these connections correspond to the

strongest connections in the network. In practice, howeverk, identifying a sufficiently accurate

metric that accounts for difference in local density when scoring similarity is highly challenging.

The inclusion of local similarity through the addition of KNN connections should help alleviate

the downsides of the global information: isolated notes and poor retention of information in

less dense areas. In this work, we term this inclusion of KNN and Threshold approaches a

combined network. To create it, we use low values of K and high threshold t i.e. (K < 20 and

the top 1-2.5% most similar edges).



2.2. Similarity Networks 43

2.2.4 Skewed K-Nearest Neighbour Network

One of the potential drawbacks of the KNN network is that it does not adapt the number

of neighbours assigned to any node. It overvalues connections in less dense areas i.e. it

includes connections that are too dissimilar. An alternative to assigning each node an identical

K would be to skew the value or adjust the value K based on an estimation of it local density.

This has two benefits; nodes with a large number of similar neighbours will not be under-

represented and nodes that are in less dense areas that are unalike to other nodes will not be

over represented in the network. The question then is how to estimate local density? Here we

consider the distribution of the mean distance to a nodes’ K1 nearest neighbours. We select

K1 to be small to ensure we consider a small enough radius of connections but large enough

that isolated nodes or communities have an increased value.

Figure 2.2: Mapping of Local Density Distribution to Number of Nearest Neighbours.
This figure demonstrates how the number of nearest neighbours assigned to a node can be
adapted based on local density in a dataset of mixed Gaussians. A shows the distribution
of local density for all nodes estimated by the mean distance to their top K1 = 10 nearest
neighbours. For each node, we map from its local density to its assigned number of neighbours
K. B & C show the distribution of neighbours K each node is assigned using a linear and
logarithm map respectively from the local density to [1,2, ..,Kmax = 50]. The Logarithmic map
creates a larger number of nodes with low K.

Figure 2.2A shows an example distribution for a mixed multi Gaussian of ten clusters of mixed

sizes. We consider two methods of mapping our density distribution to the distribution of neigh-

bours [1,2, ..,K]; B) a linear map, and C) a logarithmic map. The linear map simply reflects

the distribution of the density estimation; in this particular case a right skewed distribution with
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a significant concentration of highly dense node i.e nodes with a small distance to its local

neighbours. The logarithmic map maps significantly more nodes to lower values. Figure 2.3

highlights this effect. Panels 2.3A and 2.3B show nodes coloured by their assigned number

of neighbours for the linear and logarithm map respectively. In the linear map, the majority of

nodes are assigned K close to Kmax (=10 in this example). By contrast, the logarithmic map

assign significantly lower K values for nodes outside the dense clusters. This is reflected in

the resulting networks. The Log Skewed KNN network (Figure 2.3D) has far fewer edges in

the less dense areas of the feature space than the Linear Skewed KNN network (Figure 2.3C).

Figure 2.3: Creating a Nearest Neighbour Network with Adaptive Number of Neigh-
bours. A & B show the number of neighbours assigned to each node using linear and
logarithmic mapping respectively. C & D show the corresponding generated networks. In A
& B points are coloured by their assigned number of neighbours K. In C & D nodes are
coloured by their degree. The same colour gradient is used for all panels. The logarithm
mapping assigns low density nodes lower K than the linear mapping greatly reducing the
density at the peripheries of the network.
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2.3 Synthetic Data Generation

As discussed above, one of the most common applications of similarity networks is com-

munity detection, in biomedical applications these include disease subtyping or single cell

classification. They are frequently used as part of pipelines within detection methods for

example, K-Nearest Neighbour networks are commonly used as a processing step within

Laplacian based spectral clustering von Luxburg (2007) or as part of more involved analysis

such as single cell clustering Hao et al. (2021). Again the effect of network parameter choices

are not discussed extensively. One of the challenges with assessing the effect of parameter

choices and construction methods is that ground truth labels are typically unavailable. Another

challenge in evaluating similarity construction methods is that assumptions are made on the

distribution of communities in the data space, more specifically, different communities have

different distributions but these assumptions can only be verified through the accuracy or

apparent success of methods after the construction of the network and the clustering method.

Again in most applications, we will only have pointwise estimates of the model performance

and assessing the impact of network choice is challenging. It is quite difficult to separate the

effect of network choice from the choice of clustering algorithm with limited data instances.

In this work, I propose assessing network sparsification performance using synthetic data.

Synthetic data is commonly used to evaluate network clustering algorithms. There are a num-

ber of benchmark networks with embedded community structure such as the Lancichinetti-

Fortunato-Radicchi (LFR) Lancichinetti, Fortunato, and Radicchi (2008), the Girvan-Newman

(GN) Girvan and Newman (2002) or the Artificial Benchmark for Community Detection with

outliers (ABCD+o) Kamiński, Prałat, and Théberge (2023) benchmarks. These algorithms

generate networks with realistic community structures, which are desirable. However, they

produce fully formed, sparsified networks and lack the raw data and feature sets necessary for

estimating similarity. Consequently, they are not suitable for evaluating sparsification methods.

To assess similarity networks, we require data generators that embed community structure

in a set of features. We need data with two key characteristics — known ground truth labels

and data where each cluster arises from a separate distribution. Synthetic data can provide

both. With synthetic data, we can control both the size and number of clusters in our data. It is

also possible to control the noise and difficulty of our cluster problems. Finally, we know with

synthetic data that the different data instances arise from identical distributions. Changes in

performance caused by different networks can be assessed with multiple instances, providing

a more accurate measurement than single point-wise estimates.
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We must acknowledge that there are significant drawbacks to synthetic data. We have no

guarantee that these data settings are reflective of real world scenarios, in particular, the data

scenarios where similarity networks are most typically used — gene expression data (RNA

seq) and patient medical data. We have no guarantee that the noise profile and distribution is

as challenging as real world scenarios. In developing this synthetic data framework, we make

a number of decisions designed to reduce the simplicity and separability within the data and

attempt to reflect more realistic real world scenarios. While the specific data distributions might

not reflect real world distributions, the core assumptions behind each generation method do

reflect assumptions commonly made when similarity networks are utilised.

We consider three different types of synthetic data distributions

• Mixture of Gaussians — each cluster assigned a separate cluster center and samples

drawn from a d-dimensional Gaussian distribution with identity covariance,

• Mixture of Student’s-t distributions — similar to the mixture of Gaussians but samples

are drawn from a Student’s-t distribution with 2 degrees of freedom,

• Categorical Features — d categorical features with nl possible values. Samples from

each cluster are drawn according to their own independent probability distribution.

Each of the three distributions assess very different characteristics. The mixture of Gaussian

reflects an idealised setting where each cluster is quite distinct, each feature is informative and

each data point is consistent with its particular cluster. The generation of mixture of Student’s-

ts is similar to the mixture of Gaussians but the samples for each cluster are drawn from

a noisier distribution. The key difference introduced by this change in cluster distribution is

lower density close to the center of the cluster and fatter tails. The higher spread ensures

overlap and difficulty in distinguishing between different clusters. In contrast, the categorical

data offers a significantly different problem setting. We have a mixture of informative and

uninformative features. The low resolution of each feature is a challenge that both heightens

similarities and differences between clusters. When the number of possible values within

categorical features is fixed, the difficulty of the clustering problem increases significantly with

the number of clusters for this data distribution. The categorical dataset additionally allows us

to assess a setting where the euclidean distance metric is unlikely to be optimal in ranking the

similarity/dissimilarity between different entities accurately.



2.3. Synthetic Data Generation 47

2.3.1 Mixed Gaussian and Student’s-t Distributions

Perhaps the simplest form of mixed cluster data, or at least the most commonly analysed

cluster data, is mixed multi-dimensional Gaussian data. In this setting, points from each

cluster are generated from separate Gaussian distributions. We consider the simplest setting:

square Gaussians with unit standard deviation and identity covariance. In this setting, the only

difference between each cluster’s distribution is the center from which they are generated. A

key challenge in creating realistic or challenging mixed Gaussian data is selecting the cluster

centers. We want centers that are far enough apart that the clusters can be detected but close

enough that the task is not trivial.

To allow flexibility generating arbitrary numbers of clusters, we require automatic generation of

cluster centers. We generate the set of cluster centers sequentially. We start from a set of one

initial point X0. We then select a center at random from the existing cluster centers (initially

just X0). Proposal points are generated by sampling from a hypercube centered around X0 of

diameter U . Points too close (within a radius L) to all existing centers are rejected. Proposal

points are generated until a center is accepted. We repeat until the required number of centers

have been generated — randomly changing the existing cluster to center the hypercube on.

Figure 2.4 shows an example of this process in two dimensions.

Biomedical data is typically high dimensional. Our generation process does not depend on the

dimensionality of the Gaussian distribution. We can adapt this process to higher dimensional

Gaussian clusters providing a more realistic set of data. For a fixed number of samples n, as

the number of dimensions increases the likelihood of overlap between clusters decreases.

In order to retain a challenging community detection problem, we adjust the diameter of

the proposal region U and the radius of the rejection region around the cluster centers L

relative to the dimensions of the multivariate Gaussians. Empirically, we found that scaling

the rejection and sampling radius with 1√
d

works well for d <= 50. Figure 2.5 illustrates how

the clusters generated with this approach scale with dimensionality on a number of example

cluster settings — — Equal 3, Equal 10, Equal 30, Single Large and Mixed Sizes (detailed

description provided in Section 2.4.1). Figure 2.5A shows examples of data generated with

two-dimensional multivariate Gaussians and Figure 2.5B shows examples of data from fifty-

dimensional multivariate Gaussians projected to two dimensions using principal component

analysis (PCA) Wold, Esbensen, and Geladi (1987). We can see in Figure 2.5B the clusters

are not trivially separable in the two-dimensional PCA projection and that the properties of the

data at lower dimensions are well retained as we scale the dimensionality.
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Figure 2.4: Process of Generating Cluster Centers for Mixed Gaussian and Student’s-
t Distributions. We generate cluster centers in a sequential manner. Panels A-C show a
two-dimensional example of the iterative process. Two parameters control the behaviour of
process; U the diameter of the possible sampling region and L the minimum radius around
each center where we reject proposal points. By adjusting U and L, we control the level of
overlap between clusters and the difficulty of the clustering problem.



2.3. Synthetic Data Generation 49

Figure
2.5:C

luster
P

roperties
in

M
ixed

G
aussian

D
ata

w
ith

Increasing
D

im
ensions.D

ata
generated

from
A

tw
o-dim

ensionalG
aussians

and
B

fifty-dim
ensionalG

aussians
projected

to
tw

o-dim
ensions

using
P

C
A

.Five
settings

ofdifferentnum
bers

and
sizes

ofclusters
are

visualised
—

E
qual3,E

qual10,E
qual30,S

ingle
Large

and
M

ixed
S

izes
(detailed

description
provided

in
S

ection
2.4.1).B

y
scaling

the
diam

eter
ofthe

cluster
center

proposalregion
U

and
rejection

radius
L

w
ith

1/ √
d,

w
e

ensure
a

sim
ilar

levelof
overlap

betw
een

the
clusters

and
retain

a
challenging

com
m

unity
detection

problem
.



2.3. Synthetic Data Generation 50

Our procedure for placing cluster centers is designed to create datasets with dense clusters

that exhibit overlap, ensuring a balance between cluster detectability and complexity. The

placement algorithm positions cluster centers in a way that results in some samples be-

ing situated between clusters, leading to overlapping regions. This overlap creates a non-

trivial clustering problem, where clusters are detectable but not easily separable. A more

challenging community detection task can easily be obtained by replacing the distribution

we draw our samples from. Using a Student’s-t distribution with identity covariance and 2

degrees of freedom, we can add random noise to the data space and create a far more

challenging detection task while keeping many of the properties of our mixed Gaussian data.

The Student’s-t distribution adds two key effects; significantly higher noise with greater overlap

between clusters and a higher number of outliers with several points completely distinct from

other members of the same cluster. Figure 2.6 shows the differences between Student’s-t and

Gaussian distributed clusters. Figure 2.6A shows example two-dimensional Gaussian data,

2.6B shows example Student’s-t data generated with the same parameters and 2.6C contains

the same data as 2.6B but limited to the area where the majority of samples lie. Figure 2.6B

highlights the increased number of outlier points and Figure 2.6C shows increased spread

and cluster overlap. Using Student’s-t distributed clusters offer a noisier and more challenging

cluster problem while retaining many of the characteristics of the mixed Gaussian distributed

data.
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Figure 2.6: Comparison of Data Properties Between Gaussian and Student’s-t Distribu-
tions. This figure demonstrates how mixed Student’s-t distributions create more challenging
clustering problems due to higher noise levels and the presence of outliers. We show
examples of two-dimensional mixed cluster data generated with A Gaussian and B Student’s-t
distributions. The details on the size and number of clusters in the Equal 30, Single Large and
Mixed Sizes data can be found in Section 2.4.1. C shows the Student’s-t data restricted to the
area where majority of samples lie. The heavier tail of the Student’s-t introduces a significantly
higher number of outlier points and increased overlap between clusters. This is a far more
challenging clustering scenario that will evaluate the performance of different clustering and
sparsification methods in a more noise intensive setting.
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2.3.2 Categorical Data

Categorical and ordinal data are ubiquitous in medical settings. Medical questionnaires, and

survey data in general, heavily utilise questions with scales of increasing severity/intensity

to gather information about a patient or particular topic. Categorical data can simplify and

streamline the set of possible responses as well as the subsequent statistical analysis. A

careful component of survey design is the choice of closed i.e. categorical/ordinal questions

vs open i.e. numerical/text based questions. Selecting open ended questions can introduce

complicated data cleanup. As a simple example, suppose you ask at what age an individual

started speaking; answers could be given in months (18 months), years and months (1 year

6 months) or even decimal years (1.5 years). Not to mention there may be several distinct

ways of writing years/months (yr, yrs, mo., m, y, ms, ys) (assuming years/months are given in

english). On the other hand, categorical data can introduce problems of their own such as lack

of granularity, the merging of responses or limited ranges introducing problems such as the

ceiling effect where a significant range of individuals are compressed into a single category.

Disease analysis and the analysis of EHR data often encounter significant number of ordinal

or categorical variables yet the majority of clustering and analysis techniques are designed

for high dimensional numerical data.

In this work, we want to evaluate our sparsification methods in settings where the euclidean

distance is unlikely to be optimal. The mixtures of Gaussians/Student’s-t are constructed

through a spatial based procedure. We want a data generation procedure that is built using as-

sumptions typically made when analysing real-world categorical/ordinal data. As with numer-

ical data, our core assumption is that each subgroup arises from its own unique distribution.

For our categorical distribution, rather than generating individual clusters from multivariate

distributions, we generate individual features where each clusters has its own probability mass

function (PMF) over the possible data values. Within categorical data, there may often be

significant overlap between observed values within each group e.g. if two groups are flipping

a coin both groups will have an observed count of heads and a count of tails. However, our

assumption is the generating distribution for our groups is different, imagine one group has a

biased coin then the observed proportion of heads will not be equal to the tails.

To generate a probability mass function (PMF) across m categories, we sequentially sample m

times from m uniform random variables to get a set of probabilities pk where the limits on each

random variable are adjusted so that ∑
m
k=1 pk = 1. Our PMF is then given by [p1, p2, . . . , pm].

We have two requirements — the total mass must equal 1 and all values must be non-

negative. We add a parameter xmin that allows us to ensure at least one category will have

xmin probability mass, ∃k; pk ≥ xmin. Our process proceeds as follows; xmax1 = 1. i) if first

element: p1 ∼U [xmin,xmax1]. else: pk ∼U [0,xmaxk] ii) reduce remaining mass by sampled
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Figure 2.7: Generating Categorical Features Using Independent Probability Distri-
butions for Clusters. To generate a categorical feature, we first generate independent
distributions for each cluster across the m possible category values (in this example there
are 5). Observations xi are then sampled according to these distributions for each data point
within the cluster. For instance, if the categories represent levels of language proficiency (e.g.,
k = 0: few words, k = 4: fluent), individuals in cluster C1 are predominantly assigned k = 0,
indicating minimal proficiency, while individuals in cluster C2 are more likely to be assigned
k = 1 or k = 2, reflecting intermediate levels of proficiency.
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value: xmaxk+1 = xmaxk− pk. iii) repeat m− 1 times, iv) set remaining mass as final value :

pm = 1−∑
m−1
k=1 pk. iv) shuffle elements to ensure that the category with xmin guaranteed mass

can occur in any of the m categories. The parameter xmin allows us to control how detectable

a cluster is by concentrating mass in a single category.

Figure 2.8: Controlling Feature Generation with Beta Distribution for Categorical Data.
This figure illustrates how a Beta distribution is used to adjust the informativeness of features
in a categorical data generator. Features are generated with and without cluster information
(> or < 0.5) according to the value of a skew factor θi sampled from a beta distribution. The
tendency of each probability mass function (PMF), sampled from the generator, to concentrate
in a particular category is controlled by θi. Values closer to 1 result in clearly defined clusters
with more samples from each cluster receiving the same value. In this way, the difficulty of
clustering the categorical dataset can be controlled. Our dataset is parameterised by the
number and size of the clusters, number of features d and parameters of a beta distribution
Beta(α ,β ).

To generate a feature with detectable clusters, we generate separate PMFs, Pc = [pc
1, pc

2, . . . pc
m]

for each cluster c where pc
k is the probability of a member of cluster c having category k in

the feature. We then sample values for each node based on the PMF of the cluster it belongs

to, xi ∼ Pci where ci is the cluster to which node i belongs to. Finally, we merge our feature

as shown in Figure 2.7. Each feature is effectively the sum of independent random variables.

The skewness of each cluster’s PMF indirectly measures the informativeness of the feature

and the ease with which the subclusters can be identified.

In realistic settings, not all features are informative. As a result, we want to include a mix

of informative and uninformative features. Partially to reflect real world datasets but also to

increase the difficulty of the clustering problem. When generating a set of d features, we

use a Beta distribution to control the choice of informative and uninformative features. As
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shown in Figure 2.8, to generate a feature we first sample our skew factor θi from a Beta

distribution, if θi < 0.5 our feature will be "uninformative", it will not be generated through a

sum of independent subtype distributions. Instead, we generate a single PMF for all nodes,

xi ∼ P, regardless of their cluster. If θi >= 0.5, we generate as normal with each cluster

receiving it’s own distribution. We use the skew factor to control how skewed the underlying

PMFs are. θi is scaled from [0.5,1] or [0.5,0] to [0,1] and controls the minimum probability

mass of the first uniform random variable. Our dataset is constructed by concatenating the d

features together. In this way, the parameters of the Beta distribution Beta(α,β ) control how

challenging the generated dataset is. Figures 2.9 and 2.10 show examples of data generated

using different sets of values for α and β .

Figure 2.9: Impact of Beta Distribution Parameters on Clustering Difficulty for Categor-
ical Data Data with 50 categorical features are generated for a number of pairs of different
α and β values. The two-dimensional PCA projection of the data, the distribution of sampled
skew factors θi and true Beta(α,β ) density function are shown for each pair of (α ,β ) values.
We can see the more informative features that are included in the data the more distinct the
clusters are and the easier the clustering problem.



2.3. Synthetic Data Generation 56

Figure 2.10: PCA Projections of Categorical Data with Different Beta Parameters and
Number of Clusters. This figure shows two-dimensional PCA projections of categorical data,
generated with fifty features and five categories per feature. The dataset consists of 2500
samples divided into 3, 10, and 30 clusters, with different pairs of α and β values applied. The
projections illustrate how clusters become less distinct as the number of clusters increases.
For the parameter setting α : 5,β : 1, representing an "easy" problem, the three clusters
are well-separated. In contrast, with 30 clusters, only one or two clusters remain clearly
visible, demonstrating the increased difficulty of distinguishing a higher number of clusters
in categorical data.
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2.4 Experiment Setup

To evaluate the performance of the sparsification methods, I generate datasets of 2500 samples

with 50 features These values were selected as they provide a realistic level of complexity both

in terms of number of samples and feature dimensions. We generate datasets for each of the

distributions described in Section 2.3

• Mixture of Gaussians,

• Mixture of Student’s-t distributions,

• Categorical Features.

A key advantage of these synthetic data generators is the ability to adapt both the number

and size of the embedded clusters. The specific cluster settings used in the experiments in

this work are detailed in Section 2.4.1. In this experiment, I limit each categorical feature to 5

possible levels/categories.

2.4.1 Cluster Settings

A key consideration in evaluating clustering algorithms is the choice of cluster scenarios. In

this study, I examine five distinct cluster settings:

• Equal 3/10/30 — 3/10/30 equally sized clusters.

• Single Large — 10 clusters; 1 large cluster containing >50% of nodes, 7 small clusters

(1-5%) and 2 medium clusters (10%, 20%).

• Mixed Sizes — 10 clusters of mixed sizes; 3 larger clusters (20-30% of nodes), 2

medium clusters (5-10%) and 5 smaller clusters (1-5%)

The motivation behind selecting these cluster settings is twofold: (i) to test the ability of

different algorithms to adapt to variations in the number and size of clusters within the network,

and (ii) to evaluate how well sparsification methods adjust to changes in the size and density of

the underlying data space. Our data generation framework allows for the creation of clusters

with arbitrary numbers and sizes, providing flexibility in the design of cluster settings. The

chosen scenarios introduce significant variety in the number of clusters to be detected and

reflect several realistic situations encountered in biomedical datasets.

The settings with equally sized but increasing number of clusters reduce the density of the

clusters in the feature space. If we simply count the size of the clusters in each setting, we

range from 833 samples per cluster in Equal 3, to 250 in Equal 10 to only 83 samples per

cluster in Equal 30. For data generated using the Gaussian and Student’s-t distributions in

particular, the density of each cluster increases with the number of samples. The chance

of observing a strong tightly knit core is less likely with fewer samples per cluster. Coupled

with the increased number of different centers, the increase in number of clusters provide a
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significantly more challenging problem. These settings, however, do not reflect cluster counts

typically encountered in real world settings. In real world settings, we are unlikely to see

uniform clusters of similar density in the data space. We, therefore, consider two settings with

a more realistic cluster distribution. A setting with one large cluster that surrounded by smaller

satellite clusters and a setting with a variety of different cluster sizes. It is important to note the

number of samples from each Gaussian distribution corresponds to the relative density in the

data space. Variation of cluster size leads to a range of different densities in the feature space.

In particular, this creates data where the local distances to its nearest neighbours vary from

cluster to cluster. These settings are more challenging and allow us to evaluate the ability

of sparsification methods to adapt to areas of different density and the ability of clustering

algorithms to handle clusters of different sizes.

2.4.2 Sparsification Hyperparameters

A key challenge in evaluating similarity network construction methods is an inability to fairly

compare the performance of different sparsification methods. The difficulty in obtaining fair

comparisons arises as a result of an inability to compare different datasets and the difficulty

in isolating the effect of a particular sparsification method rather than the effect of choice of

clustering algorithm. Furthermore, typically comparisons are performed using pointwise estim-

ates for clustering performance rather than several assessments from multiple data instances.

Occasionally cross validated estimates of performance are evaluated. An additional factor that

complicates comparison is the dependency on particular choice of graph hyperparameter.

As described in Section 2.2, the different approaches to creating a network from pairwise

similarity scores result in networks with significantly different qualities. The choice of graph

hyperparameter e.g. number of neighbours K or percentile similarity threshold t, greatly af-

fects the connectivity, density and diameter of each network. Fair comparison between these

networks is difficult. It is not immediately obvious how to select equivalent similarity networks

from the sparsification methods. A common choice is the number of edges in the network

or graph density. However, two networks of similar density may have very different local

structure and the "optimal" choice of parameter (in terms of clustering performance) for two

different sparsification methods may result in very different levels of graph density. While a

hyperparameter evaluation can be conducted on any particular dataset, there is the danger of

overfitting to that particular data instance and arriving at conclusions that generalise poorly.

Furthermore, the need to conduct both a hyperparameter search and cross validation before

arriving at an estimate of clustering performance naturally adds further scepticism to the

general conclusions one can draw on sparsification results from a single dataset.
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Figure 2.11: Workflow for Evaluating Network Sparsification Methods Using Synthetic
Data This figure illustrates the workflow for evaluating network sparsification methods
using multiple instances of synthetic data. A hyperparameter search is conducted for all
sparsification methods on a single data instance. Various approaches can be used to
select hyperparameters — clustering performance of an algorithm, clustering performance
of several algorithms, consensus between algorithms or metrics of cluster quality such as
mean modularity. Once the "optimal" parameter is selected using one of these criteria, the
effectiveness of each sparsification method is evaluated by measuring clustering performance
on 10 additional data instances.
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Synthetic data offers the ability to estimate the effect of sparsification method without the

danger of overfitting to any specific data instance. It is possible to generate several instances

of cluster data from the same known underlying distribution. Comparison of performance

across several real world datasets is challenging due to differences in data distribution, cluster

distribution and problem type that offer no guarantee of equivalence. Through the synthetic

data generation, I have a guarantee that the performance of different sparsification methods

should be equivalent across instances. Additionally the equivalence in problem setting en-

sures that differences in performance of clustering algorithms are a result of differences in the

sparsification networks not differences in the clustering problem or data distributions.

To evaluate my sparsification methods, I follow the procedure shown in Figure 2.11. First,

on a single instance I sample and evaluate 25 different hyperparameters settings for each

sparsification method. I use uniform sampling across a range of hyperparameters.

• KNN — K ∈ [1,
√

N]

• Threshold — t ∈ [0.01,0.10] for

• Combined — K ∈ [1,10] and t ∈ [0.01,0.03]

• Linear Skewed KNN — K ∈ [1,2
√

N]

• Log Skewed KNN — K ∈ [1,4
√

N]

Using the metrics introduced in Section 1.5.2, I evaluate the clustering performance and

qualities of the True and Predicted clusters for three distinct clustering algorithms on each

sparsification method and each hyperparameter sample. Using this performance, I select my

hyperparameters. There are several possible ways to define an optimal hyperparameter

• Algorithm Performance — for each algorithm, select the parameter that results in

highest ARI/AMI/V-measure.

• Mean Performance — Select the parameter with highest average ARI/AMI/V-measure

across all algorithms.

• Consensus — Select the parameter that results in highest pairwise agreement (pair-

wise ARI/AMI/V-measure) between the clustering algorithms.

• Modularity — Select the parameter with highest mean modularity for all clustering

methods.

For any given clustering algorithm, the natural choice of hyperparameter is the one that

yields the highest clustering performance. However, when evaluating the quality of network

sparsification, a more robust measure might be the parameter that enables effective cluster

detection across multiple clustering algorithms. This is particularly relevant in real-world scen-

arios where ground truth clusters are unavailable, and the optimal clustering algorithm cannot

be determined a priori. Moreover, in such cases, traditional performance metrics like ARI, AMI,
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or V-measure cannot be used, as the true cluster labels are unknown. Instead, alternative

indirect metrics, such as consensus clustering or mean modularity, might serve as better

criteria for selecting hyperparameters, providing a more reliable assessment of network quality

in the absence of ground truth.

In this work, I focus on ground truth ARI of each clustering algorithm. Although mean clustering

performance is crucial, Spectral clustering was found to be quite noisy, leading to significant

variability in subsequent parameter selection. For each optimal parameter, I then evaluate

their performance on 10 other instances of the synthetic data, providing a robust estimate

of sparsification performance. From this, I obtain an estimate of sparsification performance.

I perform this evaluation — 25 parameter evaluations and 10 instance evaluations, on each

synthetic data distribution and on all 5 clustering problems. This number of parameter eval-

uations and instance evaluations was chosen to balance the need for a reliable estimate of

sparsification performance with the constraints of computational complexity.

The benefit of this approach is twofold. Firstly, it provides an estimation of the distribution

of sparsification performance on equivalent networks. Typically, only pointwise estimates of

the effect of sparsification choices are feasible for any particular problem due to a scarcity of

data. Secondly, it mitigates the risk of overfitting to a particular data instance. The practice

of selecting hyperparameters on one instance and evaluating on others can be likened to the

practice of using a validation set to identify parameter values in machine learning settings. The

key advantage of this approach lies in its ability to quantify the variance in the sparsification

process. While each clustering method contributes to the variance in performance, the proper-

ties of the data and the clusters remain identical for each instance of a specific cluster setting

and distribution. As a result, this approach facilitates a fair comparison, ensuring consistent

conditions across different instances and enabling a more robust assessment of the impact of

sparsification on network clustering performance.

2.5 Results

2.5.1 Sparsification methods

In Figure 2.12, we can see the ARI score of the SBM clustering prediction and the true cluster

membership across all five cluster settings for all five sparsification methods. Figure 2.12A

shows the change in performance across different hyperparameter settings and Figure 2.12B

shows the ARI performance across 10 instances with the optimal hyperparameter. For each

cluster setting, the hyperparameter was selected using the parameter with the highest ARI

of the SBM algorithm on that particular problem. We order the different parameter settings
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using density of the networks to allow comparison between the different parameters types —

K and t. The Threshold network is consistently the worst performing. The higher density is

necessary to ensure a connected network with limited isolated nodes. For all networks the

performance of SBM decreases as density increases. The Log-skewed KNN performance

does not drop as significantly as other KNN methods. In addition in Figure 2.12B, we can see

the performance more consistent across different settings. Linear-Skewed KNN is more noisy

but has higher mean ARI across the 50 evaluations.

Figure 2.12: Hyperparameter Search and Performance Evaluation of Sparsification
Methods using SBM clustering ARI The ARI SBM clustering score of the five sparsification
methods across all five cluster settings of mixed Gaussian data is shown using euclidean
distance as a metric. Panel A shows the results of hyperparameter evaluation, showing how
ARI changes with varying hyperparameters. To fairly compare the different parameters (K
& ε), we plot ARI vs graph density. To account for the high number of isolated nodes and
subcomponents at low densities, Threshold networks are evaluated over a broader range
of densities. Panel B displays the distribution of ARI SBM scores across 10 instances,
with hyperparameters optimised for the highest ARI performance. The Threshold network
consistently performs worse than all other methods, with a significant difference (p < 1×
10−12)

Figure 2.13 shows the ARI performance of (A) SBM, (B) Leiden, and (C) Spectral clustering

methods on all five cluster problems evaluated on ten instances of mixed Gaussian data.

For each problem and each clustering algorithm the highest ARI performing graph hyperpara-

meter is selected. The Threshold method is the worst performing method across all algorithms

and all cluster problems. The behaviour of the three clustering algorithms are quite distinct.

The Leiden algorithm is consistent across all sparsification methods and cluster problems.

While the Threshold method has a drop in performance relative to the other sparsification

methods it is not as significant as with the SBM and Spectral algorithms. The SBM algorithm
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on Log-Skewed and Linear-Skewed KNN outperform the traditional KNN in settings with

larger clusters — Equal 3, Single Large and Mixed Sizes. Their performance is equivalent

in settings with a larger number of clusters. The Spectral algorithm does not perform as well

as the other algorithms in nearly all settings although it is notable that the KNN method has a

higher performance than the Linear-Skewed KNN on the Mixed Sizes cluster problem.

Figure 2.13: ARI Performance of Sparsification Methods Across Different Clustering
Algorithms on Mixed Gaussian Data. This figure shows the mean ARI performance of
various sparsification methods across three clustering algorithms: A SBM, B Leiden, and C
Spectral, evaluated across 10 instances of mixed Gaussian data. Each data point represents
the mean ARI on networks using the hyperparameter found to havemaximum ARI for each
clustering algorithm and sparsification method respectively. 95% confidence intervals across
the 10 instances are indicated. The Threshold method consistently performs the worst across
all algorithms and cluster settings. Conversely, Log-Skewed KNN enhances the performance
of the SBM algorithm, particularly in problems involving large clusters such as Equal 3 and
Single Large.

While there are noticeable difference in clustering performance for the sparsification methods,

there are also notable differences between the three clustering algorithms. The performance

of the SBM and Leiden algorithms on KNN and Threshold networks across the cluster prob-

lems are inverted (Figure 2.13A vs.2.13B). The Leiden algorithm has greater performance

in settings with large clusters while the SBM algorithm is superior in settings with a higher

number of equally sized clusters — Equal 10 and Equal 30. The Spectral algorithm is far

more variable in on all networks and perform particularly poorly in the settings without large

clusters.
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The disparity between KNN methods and the Threshold approach is even more significant

in high noise settings as shown in Figure 2.14. Figure 2.14 shows the ARI performance

of (A) SBM, (B) Leiden and (C) Spectral algorithms on 10 instances of mixed Student’s-t

data. Both the SBM and Spectral algorithms fail to converge to a solution on the Threshold

network. The labels produced are almost random. While the difference in performance of

the Leiden algorithm was not too significant in the low noise setting with the addition of noisy

clusters the Threshold network performs far worse compared to KNN methods. The combined

sparsification method does improve that of the threshold network but simply using a KNN

method is still more optimal. It is notable that the Log-Skewed KNN no longer provides an

improvement compared to the KNN even in settings with large clusters. The Linear-Skewed

KNN does show some differences but there difference cannot be explained by cluster size.

Figure 2.14: ARI Performance of Sparsification Methods Across Clustering Algorithms
with Mixed Student’s-t Data This figure presents the ARI performance of various sparsifica-
tion methods across three clustering algorithms: A SBM, B Leiden, and C Spectral, evaluated
over 10 instances of mixed Student’s-t data. The Threshold network shows a significant
drop in performance the in high noise settings. It performs noticeably worse with Leiden
clustering compared to its performance with a mixture of Gaussians (see Figure 2.13B), and
its performance is almost random for Spectral and SBM clustering.

Differences in performance of the clustering algorithms can be seen in the high noise setting.

SBM and Leiden performance on the KNN network show similar trends across the cluster

problems as those seen in the Gaussian data (Figure 2.13). SBM is best with a higher number

of smaller clusters (Equal 30) and the Leiden is best with large clusters (Equal 3/Mixed

Sizes/Single Large). However, the SBM algorithm shows a consistent drop in ARI perform-

ance. While SBM still detects larger number of clusters more accurately the Leiden algorithm

is more robust to noise and does not show as significant a drop in performance between the

high and low noise distributions. Unlike the SBM and Leiden, the Spectral algorithm performs

better on the KNN network in the Equal 10 and Equal 30 cluster problems in the high noise
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mixed Student’s-t distributed data than in the low noise mixed Gaussian data. Additionally,

the drop in performance on the larger cluster problems is not as significant as the drop in

performance of the SBM algorithm.

In Figure 2.15, the ARI performance of the sparsification methods using (A) SBM, (B) Leiden

and (C) Spectral is depicted for 10 instances of categorical data. Spectral clustering shows

more accuracy across all network types on categorical data. While its variance is increased,

it consistently outperforms SBM clustering on data with larger clusters. It even outperforms

Leiden clustering on the Single Large clustering problem.

Figure 2.15: ARI Performance of Sparsification Methods Across Clustering Algorithms
with Categorical Data. This figure displays the ARI performance of various sparsification
methods across three clustering algorithms: A SBM, B Leiden, and C Spectral, evaluated
over 10 instances of categorical data. Consistent with results from other distributions (Figures
2.13 and 2.14), the Threshold method is the poorest performer across all three algorithms.
For SBM clustering, there is a noticeable performance gap between KNN and the Log-Skewed
and Linear-Skewed KNN networks, especially for problems with large clusters such as Equal
3, Single Large, and Mixed Sizes. Increased variance across methods and networks highlights
greater differences between instances of categorical data.

In line with its results on other distributions (see Figures 2.13 and 2.14), Threshold is con-

sistently the poorest performing method across all three algorithms. Surprisingly, for categor-

ical data with the Equal 3 clustering problem, Threshold was best performing sparsification

method for Leiden clustering (Figure 2.15B). However, this single data point of improvement

does not overcome the evidence across the different distbrituions that KNN sparsification is

more suited to clustering than Threshold.
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Consistent with results observed for other data distributions (see Figures 2.13 and 2.14), the

Threshold method consistently performs poorly across all three clustering algorithms. Notably,

for categorical data in the Equal 3 clustering problem, the Threshold method unexpectedly

performs better with the Leiden clustering algorithm (Figure 2.15B). Despite this single in-

stance of improvement, the overall evidence from various distributions indicates that KNN

sparsification is generally more effective for clustering compared to the Threshold method.

Interestingly, there is a wider gap between KNN and the Log and Linear-Skewed KNN net-

works for SBM clustering ARI on problems with large clusters (Equal 3, Single Large, and

Mixed Sizes). Skewed KNN methods continue to provide an improvement in performance

on these types of problems. It should be noted the variance of all methods and networks is

increased on categorical. This suggests there greater differences between instances of the

categorical data.

Degree Distributions

Figure 2.16 shows the degree distribution for the five sparsification methods. The graph

hyperparameters are selected to produce a graph density of 0.025 for each of the cluster

problems (A) Equal 3, (B) Equal 10, (C) Equal 30, (D) Single Large and (E) Mixed Sizes. The

distributions for all graphs are quite consistent across the different clustering problems. KNN

is linear in the log log plot. There are no nodes with degree less than K but the count drops

exponentially as degree increases. The Threshold network by contrast has very different

behaviour, it is log normal with large number of low degree nodes and a number of large

degree nodes. The Combined method is a combination of both KNN and Threshold for low K

and low t and the effect of this combination is visible in its degree distribution. Similar to the

KNN network there are no nodes of degree less than K. There is a spike in the frequency of

nodes of degree K as seen in the KNN network but the distribution for nodes of degree > K

is approximately identical to the Threshold network.

Both the Linear-Skewed KNN and Log-Skewed KNN allow the inclusion of nodes with degree

< K in a KNN graph. However there is very different behaviour between the two. The Linear-

Skewed KNN fails to include many low degree nodes. The degree distribution is still quite

similar to the KNN network but with an addition of node degrees just less than K. The Log-

Skewed KNN includes a more diverse set of node degrees. It contains many low degree nodes

and has a very different degree distribution to the KNN network. It closer to the Threshold

network with nodes of all degrees. The Log-Skewed KNN is effective at lowering the density

of a KNN network. To achieve a density of 0.025 a choice of K = 50 can be used for the KNN

but K = 400 is required for the Log-Skewed KNN.
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Figure 2.16: Example Degree Distributions of Networks with Identical Density Across
Different Clustering Settings. Example degree distributions of networks for all sparsification
methods on the five clustering problems; A Equal 3, B Equal 10, C Equal 30, D Single Large
and E Mixed Sizes. Parameters are chosen so that each network has a density of 0.025. Data
from a mixture of Gaussians is used in each instance. The KNN is linear in the log-log plot
showing the count drops exponentially as degree increases. By design it has no low degree
nodes. The Threshold network has a log normal degree distribution. The Combined network
resembles the Threshold distribution at high degree nodes and the KNN for its lowest degree
nodes. Both the Linear-Skewed and Log-Skewed KNN facilitate the inclusion of nodes with
degree < K, however, the Linear-Skewed KNN fails to include a significant number of low
degree nodes unlike the Log-Skewed KNN.
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Network Properties

The differences in graph properties extend beyond the degree distribution. Figure 2.17 shows

the pairwise distributions of the Threshold, KNN, and Log-Skewed KNN networks for Gaus-

sian distributed data across all five cluster problems. The graph hyperparameters were se-

lected to optimise SBM ARI performance. The distributions for modularity of (I) ground truth

clusters, (II) graph diameter, (III) average path length on the network, (IV) degree assortativity

and (V) the ARI of fitted SBM models are shown. The most significant difference between the

Threshold and KNN networks is the average path length (2.17I). Average path length is the

average number of steps along the shortest paths between all pairs of nodes in the network.

We can see the Threshold networks are very compact with only 2-3 steps on average between

nodes in the network (2.17III). The degree assortativity also highlights distinct behaviour

between the graph types. KNN network are dis-assortative (2.17IV). Edges are more likely

to occur between low and high degree nodes. There is no clear assortativity to Threshold

networks. There is no strong connection pattern based on node degree. There are also

notable differences in the modularity of the ground truth clusters. KNN and Log-Skewed

KNN networks are significantly more modular and have more interconnectivity within clusters

(2.17I).
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Figure 2.17: Pairwise Distributions of Network Metrics and SBM ARI for Various
Sparsification Methods on Gaussian Data. Pairwise distributions of I) ground truth cluster
Modularity, II) Graph Diameter, III) Average shortest Path length, IV) Degree Assortativity and
V) SBM algorithm ARI for Threshold, KNN and Log-Skewed KNN networks on Gaussian data.
Threshold networks are less modular (I) and its clusters are more interconnected with lower
diameters and shorter average path lengths (B II). KNN networks are dis-assortative (IV) with
connections between low and high degree nodes more likely. Log-Skewed KNN networks
have larger diameters and are more assortative than KNN networks (C II).
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2.5.2 Clustering Algorithms

In Figure 2.18, performance of each clustering method is shown for the Gaussian data and

euclidean metric. This the average performance for each clustering method on all five network

types and all five clustering problems. In Figure 2.18A, the performance is plotted vs density

of the corresponding network under a particular parameter e.g. KNN for with K = 20 might

have an average density 0.015 over the five different clustering problem. In Figure 2.18B, we

show the performance of each method on 10 other instances of the data (for all clustering

problems and all graph types) where the graph hyperparameters are selected using the best

ARI performance of each clustering method on a particular clustering problem e.g. KNN

K = 10 is best SBM ARI on Equal 30, K = 20 is best Leiden ARI on Equal 30. We can see

the Leiden algorithm is by far the most consistent clustering algorithm across all densities.

The SBM algorithm performance is competitive at lower densities but drops as the density

increases. This is unsurprising as the number of possible Monte Carlo swaps increases with

the number of edges in the network. Most significantly we can see that Spectral clustering

is noisy. The frequent spikes and area of significantly lower performance is a result of the

eigengap heuristic not identifying neither the correct nor a plausible K. When it does converge

the performance is often competitive with the other algorithms. It must be noted a key aspect

of the community detection problem is the identification of the number of clusters and the

inability to converge is a serious drawback.

As described in Section 1.5.2, clusters of different sizes are equivalent to class imbalances

in multi/binary classification problems. In Figure 2.19, we can see the performance of each

method when accounting for different cluster sizes — small <7.5% of nodes and large >7.5%

of nodes. We show the distribution of F1-score performance of between best predicted cluster

for each true cluster of all three clustering algorithms on all five clustering problems and all

five types of network. Again for each network the graph hyperparameters are selected on one

instance using the best performing ARI of a particular algorithm and evaluated on 10 data

instances. Figure 2.19A, 2.19B and 2.19C show the performance with Gaussian, Student-t

and Categorical distributions. We can see the both the Leiden and Spectral algorithms fail to

detect smaller clusters accurately. The SBM algorithm is more consistent. It’s performance

on all cluster sizes is roughly equal across all distributions. The Leiden algorithm is more

proficient than the SBM at detecting larger clusters but it very rarely detects smaller clusters.

In Figure 2.20 the predicted number of clusters for (A) SBM, (B) Leiden, and (C) Spectral

by network is compared to the ground truth number of clusters on mixed Gaussian data.

The ground truth number of clusters varies by cluster problem (as seen by the dashed grey

line). From Figure 2.20A, we can see SBM consistently over-predicts the number of clusters

in a network. This is true for all network types. SBM is most accurate when dealing with
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Figure 2.18: ARI Scores of Clustering Algorithms Across Sparsification Methods with
Mixed Gaussian Data The ARI score of the three clustering algorithms across all five cluster
settings and all five sparsification methods of mixed Gaussian data using euclidean distance
as a metric. Panel A shows the change in performance for different hyperparameter choices.
The Leiden algorithm is the most consistence across all parameter settings. SBM performs
better at low network densities and drops in performance the more edges that are added to
the networks. Spectral is noisy and frequently fails to converge to a solution. Panel B shows
the distribution of ARI score across 10 instances where the hyperparameter is selected to
maximise each clusters performance. Leiden is again the most consistent and has the highest
average performance. The methods vary significantly in performance across the clustering
problems but Spectral is noticeably the worst performing method by a significant marge (p <
1×10−20).
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Figure 2.19: Per Cluster F1-Score of Clustering Algorithms Across Different Data
Distributions. Per cluster F1-score of the three clustering algorithms on A Gaussian, B
Student’s-t and C Categorical data distributions on all network types and all clustering
problems. The performance of the algorithms at classifying small (<7.5% of nodes in the
network) and large clusters (>7.5% of nodes) are shown. The SBM is most consistent across
all distributions and has equivalent performance predicting large and small clusters. Leiden is
very good at detecting large clusters but fails to distinguish small clusters in all 3 distributions.
Spectral is also poor at detecting small clusters but also suffers poor performance in predicting
large clusters in Gaussian and Student’s-t distributed data.

problems with a large number of underlying clusters, Equal 30, and overfits to non-existent

subclusters in problems with fewer, Equal 3. In contrast, Figure 2.20C shows that Spectral

generally under-predicts the number of clusters in the network. On problems with mixed

clusters sizes, Single Large and Mixed Sizes, it underfits and groups smaller subclusters

together the larger embedded clusters. Leiden is generally the most accurate (Figure 2.20B),

successfully detecting the number of clusters for Equal 3, Equal 10 and Equal 30. While it

similarly underfits the number of clusters on problems with mixed sizes, it does so to a lesser

extent than Spectral.

It must be noted that this behaviour varies across networks. On the Threshold network, Leiden

consistently predicts a very large number of clusters across all cluster problems. However, the

Adjusted Rand Index (ARI) (see Figure 2.13B) does not always show a corresponding drop

in performance; for example, Equal 3 ARI is very high. This large number of clusters is likely

comprised of a low number of large clusters combined with many isolated clusters containing

only one or two nodes. Additionally The improved SBM ARI of the skewed KNN networks

(Figure 2.13A) on problems with large clusters results from predicting fewer clusters (Figure

2.20A). Unlike the KNN network, large clusters are not split into smaller subclusters on these

networks.
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Figure 2.20: Predicted vs. Ground Truth Number of Clusters for Clustering Algorithms
on Mixed Gaussian Data. This figure compares the predicted number of clusters for A SBM,
B Leiden, and C Spectral clustering algorithms against the ground truth number of clusters on
mixed Gaussian data. The ground truth number of clusters varies by cluster problem, indicated
by the dashed grey line. The clustering algorithms’ behavior depends on the underlying
network. On the Threshold network, Leiden consistently predicts a significantly larger number
of clusters across all cluster problems. Despite this overestimation, the ARI (see Figure 2.13B)
does not always show a corresponding decrease in performance, as exemplified by the high
ARI for the Equal 3 problem. This discrepancy suggests that the large number of predicted
clusters often includes a few large clusters combined with many isolated clusters of one or
two nodes. The improved ARI of the skewed KNN networks in problems with large clusters
can be attributed to their closer alignment with the ground truth number of clusters, as these
networks do not split large clusters into smaller subclusters unlike the KNN network.
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Figure 2.21 visualises an example clustering for the three methods (A) SBM, (B) Leiden and

(C) Spectral on a KNN network for Gaussian Mixed Sizes data. The nodes are grouped by

predicted cluster and coloured by their ground truth cluster. We can see there is a disparity in

the number of clusters predicted with the SBM predicting 22 clusters, Leiden 6 and Spectral

only 4. The SBM has high homogeneity, meaning the members of a predicted cluster belong to

the same true cluster, but low completeness, as it separates the largest ground truth clusters.

In contrast, the Leiden algorithm has high completeness, where all members of the same

class are in the same predicted cluster, but low homogeneity, as it combines several smaller

clusters together. The Spectral clustering behaves similarly to the Leiden algorithm but is more

extreme, combining larger ground truth clusters. This illustrates the reason behind the poor F1

performance on smaller clusters for both the Leiden and the Spectral algorithms — they fail

to detect smaller clusters, while the SBM algorithm performs poorly with larger clusters as it

frequently splits them into subclusters.
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2.6 Discussion

Despite its widespread use, Threshold sparsification produces networks that are far less

conducive to community detection than K-Nearest Neighbour sparsification. In this work, I

have observed measurable differences between the two approaches in cluster performance

across a range of clustering algorithms and in both high and low noise settings. Threshold

networks constructed from data with high level of noise and numerous outlier nodes are

particularly poor. Local behaviour is essential for community structure and the global nature of

the threshold approach does not lend itself to use in community detection. While theoretically

a metric should accurately rank the highest similarity between entities and ordering by this

ranking should result in the inclusion of only the most informative edges in the network,

in reality, differences in density and lack of information at the peripheries of clusters result

in less modular structure and networks that ultimately do not contain sufficient community

information. Threshold networks contain more inter community connections resulting in lower

average path lengths. The local nature of KNN results in more modular networks with less

connections between communities.

While some concerns exist with KNN construction regarding both the over allocation of edges

to outlier nodes and the inclusion of edges with lower similarity evidence, there is no significant

improvement in performance when adjustments are made to the number of edges assigned

to each node based on density in the feature space. This can be seen from the comparable

performance of all clustering algorithms on the KNN and Log-Skewed KNN networks in the

high noise setting in Figure 2.14. While skewed KNN networks enabled SBM clustering to

detect larger clusters, my particular approaches to adjusting the number of neighbours are not

consistent enough. In some problems Log-Skewed produced a more favourable network, in

others Linear-Skewed performed better (see Figures 2.13, 2.14, 2.15). An additional drawback

for both methods is the introduction of additional hyperparameters in the density estimation

step. The KNN is the simplest method of sparsification and the most consistent across the

data and clustering algorithms evaluated here. It allows the inclusion of information from both

high and low density areas within the data. Furthermore, KNN construction is scalable to lar-

ger networks through the use of approximate KNN construction. In this work, I have presented

strong evidence that KNN sparsification should be used when constructing similarity networks

for community detection.

I have also demonstrated the utility of SBM and Leiden clustering algorithms. SBM is suited

to settings where a large number of smaller clusters are expected. The Leiden algorithm is

more accurate in the classification of larger clusters. It is also more accurate in its estima-

tion of the number of clusters, SBM consistently overestimates the number of clusters in a

network (Figure 2.20). While I have shown the SBM algorithm detects smaller clusters more

accurately (Figure 2.19), applying this in practical real-world scenarios may pose considerable
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challenges. Without ground truth labels, distinguishing between SBM splitting large clusters

incorrectly in sub-clusters and SBM successfully detecting true small clusters is highly chal-

lenging. Leiden is more resilient to noise and, while there are valid reasons to have misgivings

on modularity maximisation, ultimately it results in more accurate cluster prediction.

Spectral clustering was found to be the noisiest clustering method. It consistently underfit and

failed to detect large numbers of clusters. If the correct number of clusters were identified, the

algorithm performed quite well. This highlights the challenges with Spectral clustering — there

are no in built methods for identifying the number of clusters. This contrasts with unlike SBM’s

description length and Leiden’s resolution parameter1. I made use of the eigengap heuristic

which led to selections of low number of clusters. With improved identification of the number

of clusters, spectral clustering could prove to be extremely effective.

2.6.1 Limitations

The generalisability of the conclusions that can be drawn from this chapter should be cau-

tioned by the use of synthetic data and the limited set of similarity measures. The synthetic

data is derived from a constrained set of data distributions, where clusters are centered

around distinct points in space. The variance within each cluster is standardised across

all clusters and uniform in all dimensions2. Both the mixture of Gaussian and Student’s-t

distributed data exhibit clusters characterised by dense cores, where interactions between

clusters occur only at their periphery. This data may not replicate the intricate features or

patterns found in real-world scenarios. Although attempts were made to evaluate noisier

data with outliers using a mixture of Student’s-t data, this noise distribution might not fully

capture real-world complexity but rather increase cluster interactions in a simplified manner.

My categorical data generation aims to provide an alternative distribution where clusters do

not consist of dense cores scattered through the feature space. The generation process does

assign separate distributions to individual clusters within a particular feature, however, the

construction of consistent datasets from such features can be challenging. Furthermore, the

current distribution generation falls short in producing ordinal features, a key element of many

clinical questionnaires.

Another limitation is the current selection of clustering algorithms. The use of a limited se-

lection of clustering algorithms constrains my analysis in two ways. Firstly, I am seeking to

evaluate the general suitability of a network for clustering using metrics like mean clustering

performance, but these metrics can be highly dependent on the performance of a single

method. For instance, the convergence or lack thereof of a noisy method, such as my spectral

clustering algorithm, can significantly impact hyperparameter selection. By including more

1. Leiden aims to maximise modularity. Modularity is a clear choice of metric to select between resolution
parameters. Spectral does not have such a metric.
2. Each cluster has identity covariance.
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algorithms, I can reduce my sensitivity to the convergence of single algorithm. Secondly,

while the three selected algorithms are highly representative of network-based community

detection algorithms, a more comprehensive set of algorithms would offer a better evaluation

of the flexibility and generalisability of different network approaches.

2.6.2 Future Work

A key challenge in network construction is hyperparameter selection. The aim is to select

a hyperparameter that leads to optimal clustering performance. In cases where true cluster

labels are available, there is a significant danger of overfitting if we perform this selection using

clustering performance. In this chapter, I present an approach using synthetic data that allows

us to mitigate the risk of overfitting by generating multiple instances of data. In real world

scenarios, ground truth cluster information is rare. Fortunately, my data generation framework

provides an opportunity to investigate alternative optimisation strategies. A future avenue of

research is to conduct a more in-depth exploration of hyperparameter selection for sparsific-

ation methods to identify optimal configurations. Network density, clustering consensus and

metrics such as modularity are all employed to select and rank networks. With this framework,

I can directly relate these metrics to the ground truth, gaining insights into their performance.

An interesting avenue for exploration would be the development of dynamic threshold sparsi-

fication methods. In this work, we made use of non-fixed K-nearest neighbours (KNN) net-

works as simple implementations of dynamic thresholds. These methods estimated local

density to create approximate dynamic thresholds for each node by adjusting the number

of neighbours to retain when sparsifying. These simple variations in KNN networks — Linear

and Log Skewed KNN networks — have shown improvements in estimating the number of

clusters, particularly in Stochastic Block Model (SBM) clustering. However, my approach to

the selection of dynamic thresholds and the estimation of local density remains crude, as

evidenced by the inconsistencies in the optimality of log mapping or linear mappings across

different distributions and cluster configurations. Furthermore, both methods added a number

of additional parameters that would require optimising in practical settings — number of

neighbours to estimate local density, method of mapping density to number of neighbours,

maximum number of neighbours to assign to any node. The development of a more robust

method for adjusting the number of neighbours in network construction would allow a more

flexible structure and more informative network. Moreover, the development of a truly dynamic

thresholding approach that adjusted local thresholds without relying on a KNN approach and

excluded or isolated outliers within the data automatically (similar to DBSCAN clustering Ester

et al. (1996)) would offer increased flexibility in network sparsification.
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Hierarchical clustering presents another area for exploration. The differences in performance

of my clustering algorithms across data distributions and cluster configurations highlight how

the suitability of different methods depend on both cluster number and structure, which are

often unknown a priori. Hierarchical clustering has the potential to mitigate this variability by

capturing clusters at different scales. Dendrograms, which represent the hierarchical cluster-

ing structure, can be cut at various scales and provide more interpretability over flat clus-

tering algorithms. An intriguing avenue for further exploration would be to explore network

construction for hierarchical clusters. This would require hierarchical data generation and the

development of metrics to compare the accuracy of produced dendrograms.



Chapter 3

Multi-Modal Integration

3.1 Introduction

In the digital age, we are witnessing an influx of diverse data in various forms, presenting

both exciting opportunities and significant challenges Jordan and Mitchell (2015); Mirza et al.

(2019). Effectively incorporating and utilising this wealth of data is a complex task, given the

different properties and challenges associated with various data types.

In the field of machine learning, a key challenge is the integration of these various modalities,

especially when dealing with general data forms like images or text. Approaches to integration

varies depending on the specific application. For example, in supervised learning pipelines,

it is common to use independent neural networks to generate embeddings for each data

modality, which are then processed together for the specific task Baltrušaitis, Ahuja, and

Morency (2018). The need to handle modalities separately, such as text or image input,

arises from the effectiveness of specialised models such as transformers for text Vaswani

et al. (2017) and convolutional neural networks for images Krizhevsky, Sutskever, and Hinton

(2012). This differentiation has led to the emergence of multi-view learning, a field dedicated

to addressing the integration challenges posed by modalities with diverse properties.

Biomedical data poses distinctive challenges due to its multi-modal nature, encompassing

various forms ranging from high-dimensional multi-omic data capturing genetic information

facets like RNA gene expression, DNA methylation sites, and copy number variants, to diverse

medical data types, including images and clinical information derived from diagnostic ques-

tionnaires Acosta et al. (2022); Santiago-Rodriguez and Hollister (2021). This data exhibits

a characteristic combination of a small number of observations and high dimensionality. In

addressing this unique landscape, one particularly successful approach is the utilisation of

similarity networks for multi-view learning.

By extracting the relationships within datasets using similarity measures, similarity network

approaches are effective in overcoming the challenges posed by the high ratio of features

to observations, allowing for a nuanced exploration of specific biomedical applications. What

sets similarity networks apart is their high interpretability and adaptability, serving as versatile

80
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data structures suitable for both unsupervised and supervised tasks. These tasks range from

community detection to node/edge prediction, making similarity networks a valuable tool for

uncovering insights in biomedical data Fortunato and Hric (2016); Su, Tong, Zhu, Cui, and

Wang (2018).

The application of network integration techniques has witnessed extensive use in disease

subtyping across various biomedical domains. Examples include cancer Verhaak et al. (2010),

diabetes L. Li et al. (2015), and Parkinson’s disease Markello et al. (2021). These approaches

showcase the efficacy of similarity networks and network integration methods in unraveling

complex patterns within biomedical data, offering insights for disease understanding and

classification.

One of the most successful and widely adopted techniques for constructing multi-modal sim-

ilarity networks is Similarity Network Fusion (SNF) B. Wang et al. (2014). Initially designed for

cancer subtype detection, SNF employs a diffusion process to amalgamate similarity networks

from different modalities and has been applied to many disease subtyping problems. Despite

its success, the original assessment metrics used to evaluate SNF’s performance were not

conventional clustering accuracy measures like the Adjusted Rand Index (ARI) or Adjusted

Mutual Information (Section 1.5.2). Instead, indirect metrics, such as differences in survival

rates between clusters and the number of significant genes within clusters, were employed.

Similar indirect evaluation metrics were later used for methods like NEighborhood based Multi-

Omics clustering (NEMO) Rappoport and Shamir (2019). The primary challenge in these

evaluations was the absence of data with known ground truth clusters across modalities. SNF

is a relatively complex method of combining networks that relies on the neighbours of node

being consistent across modalities. Consequently, determining the optimal conditions for SNF,

or when simpler methods like mean similarity are sufficient, remained unclear. Notably, a study

employing formal measures such as ARI found that mean similarity consistently outperformed

SNF1 Mitra et al. (2020).

To address this ambiguity, I introduce a framework for generating multi-modal data with straight-

forward variations in distribution and embedded cluster information. These variations enable

us to assess how differences in the consistency of individual similarities across modalities

impact the community detection performance of integration methods. This framework offers

a systematic approach to evaluating the effectiveness of various integration methods under

controlled conditions, shedding light on the circumstances where simpler methods may suffice

or where the complexity of SNF proves advantageous.

1. Section 1.3 provides a more comprehensive discussion with certain caveats to this performance
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A notable characteristic of biomedical data is the presence of partially complete modalities.

In multi-modal datasets, it is rare to have a complete set of measurements for all individuals.

Unit non-response, where individuals have no measured features, is a frequent occurrence. In

uni-modal analyses, these individuals are typically excluded from the study. However, in multi-

modal data, this practice can result in significant data wastage, leading to the exclusion of

large numbers of individuals or entire modalities to maximise observations. Similarity networks

are well suited to mitigating data wastage by incorporating partial data.

NEMO was developed to address this issue, aiming to incorporate partial data by calculat-

ing the relative similarity of individuals based on their shared data. Similarly, SNF can be

extended to incorporate partial data by imputing similarity values between individuals absent

and present in each modality. While partial multi-view data is well-studied, the reasons for

partial data are not extensively explored. Individuals are assumed to be partial at random yet

the reasons for partial measurement can be complex Nakagawa and Freckleton (2008). For

instance, certain diagnostic questionnaires are based on the severity of a condition, resulting

in non-random partial data that is related to the objects of interest Gotham et al. (2007). In

this chapter, I delve into the impact of partial data, both at random and not at random. I aim to

evaluate which integration methods effectively incorporate partial data, shedding light on their

performance under different conditions and contributing to a deeper understanding of their

applicability in real-world scenarios.

In summary, my aim is to demonstrate the effect of similarity integration approach on com-

munity detection performance of constructed networks. A challenge in the evaluation of net-

work construction is the lack of datasets with known ground truth community structure and

data properties in each modality. To overcome this, I use multiple instances of synthetic data

to allow an exploration of different levels of noise and consistency across modalities. I evaluate

several network community detection methods across a range of different cluster settings.

Section 3.2 describes the similarity integration methods used in the construction of similarity

networks. Section 3.3 describes my multi-modal data generation framework, how I embed

different cluster information, the different data distributions used and my approach to creating

partial data. In Section 3.4, I introduce the experiments before showing and discussing the

results produced in Sections 3.5 and 3.6.
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3.2 Multi-Modal Similarity

In this chapter, I want to evaluate the quality of the network produced from multi-modal data by

similarity integration methods, specifically when applied to community detection. As discussed

in Section 1.3, Similarity integration methods can be categorised as early, intermediate and

late. My aim in this chapter is evaluating and identifying which integration methods are most

beneficial in the specific context of community detection. I consider five integration approaches

• Early

– Concatenated Xi — All modalities are combined into a single feature matrix.

Pairwise similarity and network sparsification are subsequently performed.

• Intermediate

– Mean Si — Mean similarity between a pair of nodes i and j across all modalities.

– Extreme Mean — Mean "extreme" similarity/dissimilarity between a pair of nodes

i and j across all modalities. For each modality, pairwise similarity is thresholded

to only include very similar and very dissimilar connections.

• Late

– Similarity Network Fusion (SNF) — de facto standard approach for multi-omic

integration and unsupervised clustering analysis. Similarity calculated through

diffusion across KNN graphs.

– NEighborhood Based Multi-Omic Clustering (NEMO) — Mean relative similar-

ity between nodes i and j based on a K-nearest Neighbourhood in each modality.

3.2.1 Concatenating Features

The simplest approach to integrating multi-modal data is to concatenate the features from

each modality into a single "master" feature matrix. This is the prototypical example of early

integration. From a set of m modality feature matrices Xi, a single data feature matrix X is

constructed as follows:

X = [X1,X2, . . . ,Xm] (3.1)

The benefit of this approach lies in its simplicity and the unadjusted inclusion of each modality.

If the features of any particular modality are informative, this should be captured through the

similarity calculation. In practice, modalities can have highly different scales of dimensionality

— from clinical data with tens of features to DNA methylation data with hundreds of thousands

of features Tomczak et al. (2015). In such cases, the higher dimensional modality will dominate

the differences between individuals.
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3.2.2 Mean Similarity

Perhaps the simplest method of multi-modal similarity integration beyond feature concatena-

tion is to calculate similarity for each modality independently and integrate the similarity scores

before constructing a final network G. The pairwise similarity matrix2 P is given by

PMean =
1
m

m

∑
v=1

P(v) (3.2)

where m is the number of modalities and P(v) is the pairwise similarity for modality v. This

intermediate integration technique involves calculating the pairwise distances independently

for each modality and then merging them to form a single pairwise similarity matrix. From this

final pairwise similarity matrix, a network can be created. The benefit of this approach is the

ability to process each modality independently. For example, similarity within each modality

can be calculated using separate similarity measures. Each measurement of similarity is

equally valued, ensuring that modalities with lower dimensionality will not be obscured by

modalities with a high number of features.

3.2.3 Extreme Mean

Typically, the focus in community detection is on extreme similarities or dissimilarities, as

relationships between nodes that are mildly similar or dissimilar are often considered unin-

formative in network construction. These less informative relations are usually filtered out

during the sparsification process. Connections between nodes that exhibit high similarity

form communities within the network. However, in realistic scenarios such as disease ana-

lysis, negative relations (high dissimilarity) can be crucial. The distinct dissimilarity between

two individuals in a subset of features or measurements can provide strong evidence that

these individuals are not alike and likely do not share the same disease or disease subtype.

Connecting these dissimilar individuals in network construction would be inaccurate. One

approach to creating a network based on strong (dis)similarities is to threshold the similarities

of each modality before integration.

To threshold a modality’s pairwise similarity matrix P, we apply the following rule:

W (i, j) =

P(i, j), if |P(i, j)|> σ

0, if |P(i, j)|< σ

(3.3)

2. This notation is used to keep consistency with the original notation used in deriving the SNF method. With
respect to previous chapters, the corresponding notation is P(v) = Sv
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where σ is chosen threshold value. This thresholding process can be straightforwardly applied

to normalised similarity metrics, such as Pearson correlation. After thresholding, only highly

positively correlated or negatively correlated relationships will be retained. For unnormalised

metrics like Euclidean distance, one can normalise the pairwise distances to obtain a zero

mean, identity standard deviation distribution of pairwise distances, making it easier to choose

an interpretable threshold value. In this work, a threshold of σ = 1 standard deviation is used,

ensuring that only pairwise values that are significantly similar or dissimilar are retained.

To obtain the final pairwise similarity matrix (PExtr), we compute the mean of the per-modality

thresholded pairwise similarities:

PExtr =
1
m

m

∑
v=1

W (v) (3.4)

This method can be considered as both an intermediate and late integration method. The

threshold step is akin to threshold sparsification discussed in Section 2.2.1, making it a form

of integration of weighted threshold networks. Unlike threshold sparsification, this method

retains highly dissimilar connections, and the resulting weighted pairwise similarities after

thresholding do not represent a typical threshold network as described in Chapter 2.

3.2.4 Similarity Network Fusion

Similarity Network Fusion (SNF) B. Wang et al. (2014) is a late integration approach for

constructing a multi-modal similarity network. SNF employs an iterative diffusion process to

converge on a single pairwise similarity matrix. The primary goal of SNF is to update the

similarity between two nodes (in any given modality) based on the similarity of their shared

nearest neighbours across all modalities. It can be thought of as creating a weighted K-nearest

neighbour (KNN) network for each modality and merging these networks by adjusting the

weights between nodes based on their shared neighbours. Therefore, SNF is a late integration

method that combines networks in a non-linear manner.

In B. Wang et al. (2014), Wang et al. introduce the two key components of SNF: i) a scaled

exponential similarity kernel to compute affinity (similarity) between all nodes on each modality

and ii) a diffusion process to merge the similarity for separate modalities. The diffusion step

was a key contribution for modality integration and the method was validated through the

identification of cancer subtypes on multi-omic cancer data from The Cancer Genome Atlas

(TCGA).

The pairwise scaled exponential similarity kernel computed between all nodes is given by

W (i, j) = exp
(
−

d2(xi,x j)

µεi, j

)
(3.5)
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where d(xi,x j) is a distance metric (in the original paper, the euclidean distance was used),

µ is a hyperparameter that controls which distances can be considered highly similar (for a

fixed distance between nodes i and j, lowering mu lowers their similarity), and εi, j is a scaling

factor that incorporates the distance between the nearest neighbours of i and j. The scaling

factor εi, j is given by

εi, j =
mean(d(xi,Ni)+mean(d(x j,N j)+d(xi,x j)

3
(3.6)

where Ni is the set of neighbours of node i. This scaled similarity kernel is qualitatively different

to the euclidean distance. It is normalised between 0 and 1 and more importantly, computed

values between nodes are typically either quite close to 1 or quite close to 0. Moreover, the

scaled affinity kernel controls for different areas of density in the feature space. For a node

xi, if d(xi,Ni) is large on average then d(xi,x j) being large will not be as penalised. In other

words, if a cluster is more spread apart, the pairwise similarity of its nodes will be as high as

a more tightly knit cluster.

There are a number of key normalisations that are performed before the diffusion process to

ensure numerical stability. A row normalised weighed pairwise affinity for each modality P is

created by

P(i, j) =


W (i, j)

2∗∑k ̸=i W (i,k) , j ̸= i

1/2, j = i
(3.7)

which ensures that ∑ j P(i, j)= 1. A normalised weighted KNN network with adjacency matrix3

S is created for each modality

S(i, j) =


W (i, j)

∑k∈Ni W (i,k) , j ∈ Ni

0 otherwise
(3.8)

where Ni is the set of neighbours of node i. While a KNN network is created at this step,

the matrix S is non-symmetric and reflects the adjacency matrix of a directed network, not an

undirected network (see Section 1.1.

To integrate the modality together diffusion is performed across the KNN networks using the

similarity in other modalities. The diffusion step for modality v is given by

P(v) = S(v)×

(
∑u̸=v P(u)

m−1

)
× (S(v))T ,v = 1,2, . . . ,m (3.9)

3. Under the notation in Chapter 1, S = A.
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The similarity P(v) for each modality v is updated by considering the similarity of the local

neighbourhood of nodes i and j in other modalities (the only non-zero elements in S(v) are the

nearest neighbours of a node).

This can be more clearly seen if we express the update rule from iteration t to t +1 as

P(v)
t+1(i, j) = ∑

k∈Nvi

∑
l∈Nv j

S(v)(i,k)×S(v)( j, l)

×

(
∑u̸=v P(u)

t (k, l)
m−1

)
(3.10)

If the neighbours of node i and j are highly similar in other modalities (P(u)
t (k, l)), then P(v)(i, j)

will increase and the edge (i, j) is more likely to be included in the final network. Conversely, if

the neighbours of node i and j are very unsimilar, this reduces the evidence of a relationship

between nodes i and j. P(v)(i, j) will decrease, making it less likely the edge (i, j) will be

included in the network.

After each iteration the modalities are re-normalised (for numerical stability) until convergence

is achieved. The final network pairwise similarity is given by

PSNF =
1
m

m

∑
v=1

P(v) (3.11)

Typically, very few iterations are required. The authors found only 1 or 2 needed to converge

on the TCGA data.

SNF was developed on and applied to multi-omic cancer sets with no known ground truth

clusters. As a result, the accuracy of the method had to be evaluated indirectly. Differences

in the survival rate of the subtypes and the number of significant genes present in each

subtype were used as evidence of the success of the method. It was not evaluated with typical

clustering metrics such as ARI or AMI. There still remains unanswered questions over what

types data the method is best suited to? Does SNF always outperform simpler approaches

such as Mean Si?

3.2.5 NEMO

NEMO (NEighborhood Based Multi-Omics clustering) is an alternative approach to similarity

integration Rappoport and Shamir (2019). Similar to SNF, it is a late integration approach that

combines networks from each modality. It is a simpler approach than SNF. NEMO does not

make use of diffusion and instead integrates a nodes neighbourhood information by creating

a KNN network on each modality. A final network is created by computing a weighted sum

of the individual networks. Similar to SNF, NEMO is a late integration method that combines

networks rather than pairwise distances in order to create a final network.
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Initially for each modality, a KNN network is created from their pairwise similarity matrix and

the relative similarity between nodes is calculated using

S(v)(i, j) =
W (v)(i, j)

∑r∈Nvi
W (v)(i,r)

· I( j ∈ Nvi)

+
W (v)(i, j)

∑r∈Nv j
W (v)(r, j)

· I(i ∈ Nv j) (3.12)

where Nvi is the set of neighbours of node i in modality v, W (v) is the pairwise affinity between

nodes. Similar to SNF, NEMO makes use of the scaled exponential affinity kernel (Eq. 3.5).

Finally the average similarity is calculated using

PNEMO =
1
m

m

∑
v=1

S(v) (3.13)

For partial data the average relative similarity is adjusted to only take the mean of the modal-

ities where both nodes are present

PNEMO =
1
|σi j| ∑

v∈σi j

S(v)(i, j) (3.14)

where σi j is the set of modalities where i and j are both present. In other words, the sim-

ilarity between two nodes is calculated ignoring missing values and does not "punish" the

similarity between two nodes if they have modalities where they are not present. Unlike other

approaches the increased uncertainty in similarity between nodes with missing modalities

does result in a reduced level of similarity.

3.3 Synthetic Multi-Modal Data

As discussed in Chapter 2, a challenge in evaluating the quality and suitability of constructed

networks is a lack of data with known ground truth clusters. This further extends to multi-modal

data. As an example, Similarity Network Fusion (SNF) was first proposed on cancer data sets

from The Cancer Genome Atlas (TCGA) with unknown cancer subtypes. As a result, the

assessment of predicted clusters had to rely on differences in survival rates and the number

of significant gene mutations4. A key challenge in assessing multi-modal integration lies in

the ambiguity surrounding the scenarios where different methods excel. Understanding the

specific situations and data types to which each method is best suited is crucial for accurate

community detection. Do certain methods perform well in noisy data with inconsistencies

4. Refer to Section 1.3 for an in-depth discussion
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between the modalities? Are others more suited to "simpler" problems where modalities are

in agreement and the data is consistent? To explore such questions, we need data where

the embedded community structure in the feature space of each modality is known. Synthetic

data enables us to generate such datasets and explore these types of questions .

A key assumption in multi-modal data analysis is that each modality captures a different

aspect or view of the underlying community structure. Another assumption is that differ-

ent modalities have different distributions and properties that require individual processing.

Without this there are few reasons not to combine our data into a single modality to simplify

processing and analysis. In biological multi-omic analysis, we typically encounter an additional

factor. The dimensionality of certain modalities e.g. gene expression, varies significantly,

often having differences in magnitudes that risk overshadowing the information contained in

other modalities. The sheer scale of these dimensions necessitates separate consideration to

ensure that the insights and patterns within each modality are not obscured by the dominance

of a particular high-dimensional modality. With these factors in mind, a "good" data generator

will allow the adjustment of both the underlying data distribution and the embedded cluster

information of each modality.

In this work, I propose a framework for the generation of high-dimensional data where the

distribution and cluster information in each modality can be adjusted separately. Each indi-

vidual modality’s clustering problem is non-trivial and the performance of different multi-modal

similarity integration techniques can explored in detail. The data generation method proposed

here scales to a high number of modalities. My generation procedure is as follows i) generate

ground truth set of clusters y, ii) for each modality i, I generate the modality cluster ground

truth yi derived from y and iii) for each modality i, I generate the data Xi from the modality

clusters yi. Unlike Chapter 2 where I allow unequal cluster sizes, I split the population of

nodes N into clusters of equal size. While less realistic than the cluster settings evaluated

in Chapter 2, the equal sizes allow improved evaluation by isolating the effect of changes in

modality distribution and cluster information. It should be noted that this generation procedure

facilitates clusters of any size.

As shown in Figure 3.1, I can adjust both the distribution of the data Xi and the method of

generating the modality clusters yi from y. I want each modality to capture a different aspect

of the community structure. To replicate this in my dataset, I require a method of adjusting the

embedded clusters in each modality while still ensuring a ground true community structure

across the entire dataset. My proposed solution is to sample a set of ground truth cluster

labels y for all modalities and generate per modality labels yi from y that control how individuals

are distributed across embedded clusters within a particular modality. I want these embedded
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clusters to differ from the ground truth while remaining consistent, for example, I embed 3

clusters in X0 but ensure each cluster in y0 is assembled from the 5 clusters in y. I use the

framework introduced in Section 2.3 to adjust the data distribution of the features (Xi) of the

clusters in each modality (yi).

Figure 3.1: Generation of Modality-Specific Clusters and Feature Distributions. This
figure illustrates the possible components that can be adjusted in the process of generating
modality-specific clusters and features from the ground truth labels y. For each modality i, the
modality ground truth clusters yi are derived by applying one of four transformations to y: (i)
keeping yi identical to y, (ii) splitting clusters in y into subclusters, (iii) merging clusters in y, or
(iv) generating random, unrelated clusters. Features Xi are then generated based on yi using
one of three distributions: (i) mixture of Gaussians, (ii) mixture of Student’s-t, or (iii) categorical
data.

3.3.1 Distributions

I propose using three types of cluster distributions as shown in Figure 3.1

• Mixture of Gaussians,

• Mixture of Student’s-t,

• Categorical Data.

A detailed discussion of the generation of these three distributions can be found in Section

2.3. The key properties these three distributions allow us to assess are i) levels of noise in the

dataset and ii) the consistency of inter and intra cluster distances across modalities.
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The Mixture of Gaussians is a commonly assessed distribution with implanted community

structure. Members of each individual cluster are sampled from separate high dimensional

Gaussian distributions. I assign each cluster identity covariance so that the sole difference

between clusters are the locations of the center of each distribution. Cluster centers are

generated in such as way as to ensure some level of overlap between clusters at higher

dimensions. This overlap prevents trivial detection of clusters and ensures a challenging

cluster problem in each modality.

The Mixture of Student’s-ts is a noisier, more challenging variant of the Mixture of Gaussian

distributed data. Again members of each individual cluster are sampled from separate high

dimensional distributions that differ only in the location of their cluster center. I sample from

high dimensional Student’s-t distributions with 2 degrees of freedom, identity covariance and

unique centers for each cluster. Student’s-t distributed data is far noisier than Gaussian dis-

tributed data. Due to the heavy tail of the Student’s-t distribution, outliers are far more likely

and the level of overlap between clusters is increased. This clustering problem is far more

challenging and for my multi-modal data the variance of within clusters distances from one

modality to next is significantly increased.

The categorical data distribution is comprised of mix of informative and uninformative fea-

tures. In an informative feature, each cluster has an individual probability distribution across

n possible categories and the value of each member of the cluster is sampled according to

that distribution. In an uninformative feature each individual in the dataset samples according

to a shared distribution. This distribution is highly consistent from modality to modality. The

discrete number of possible values each cluster can take ensures that outliers are highly

unlikely and within clusters distances do not vary significantly from one modality to the next.

A more detailed description of this data distribution can be found in Section 2.3.

A key difference for this distribution is that the euclidean metric is unlikely to be an optimal

choice of metric for ranking and measuring dissimilarity between nodes. For the other distri-

butions, the greatest difference between clusters in the mixture of Gaussians and Student’s-ts

is the euclidean distance between the cluster centers. Euclidean distance is highly suited

to measuring similarity for these distributions. In the categorical data, the distribution over

categories is random and so the features are not ordinal (at least within a cluster). It is possible

for a cluster to be equally weighted to the lowest and highest levels of the categories. The

within cluster euclidean distance is not guaranteed to be lower than the intra cluster distances.
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3.3.2 Cluster Information

A key assumption of multi-modal and multi-omic data analysis is that the cluster or community

information contained in each modality varies from one modality to the next. We are unlikely

to encounter real world datasets where each modality captures data with identical cluster

distributions (within each particular modality). In such settings individual analysis of only one

particular modality might be more optimal. A far more common scenario is one where the

distribution of clusters within each modality will vary from one modality to the next. In this data

scenario it is more likely that the true cluster distribution can be identified by integrating (in

some fashion) all modalities together. I want to generate data that allows us to evaluate both

types of scenarios; i) where the cluster distributions changes from modality to modality and ii)

where the cluster information is consistent.

To adjust the cluster information embedded in each modality I propose three methods of

adjustment.

• Splitting y into sub-clusters

• Merging clusters in y into super-clusters

• Generating random set of clusters unrelated to y

In Figure 3.1, I illustrate these methods of adjusting yi on a simple two dimensional example.

My aim in making these adjustments is to evaluate the ability of similarity integration meth-

ods to handle inconsistencies across modalities. Splitting and merging y into sub and super

clusters is most reflective of real world settings were possible subtypes or cell types likely

have differences in some modalities but share traits in others. While the cluster distribution is

not identical to the true cluster distribution it will still be quite consistent from one modality to

the next on less noisy distributions.

By including a random modality where the cluster distribution yi is unrelated to y, I am able

to assess the ability of integration methods to not just handle noise within a dataset but also

handle the inclusion of uninformative data. There is no guarantee in real world settings that

all modalities will be informative for example a particular disease may affect an individuals

transcriptomic data but not its genomic data and so the inclusion of genomic data only adds

noise to the dataset. In particular, the random modality add significant inconsistencies for the

middle/late integration methods as the inter cluster distances and KNN networks generated

from random modalities are guaranteed to be unlike the ground truth data.
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3.3.3 Generating Partial Data

A number of studies have analysed the problem of partially complete data and its affect on

the accuracy of multi-modal methods S.-Y. Li et al. (2014); Rappoport and Shamir (2019); Xu

et al. (2022). However, these methods have only analysed the possibility of data being partial

at random and have not analysed the effect of partial data on network structure. I define

partially complete data to refer to a multi-modal dataset with m modalities where a subset of

the individuals have no recorded data in at least 1 of the m modalities and a complete set of

measurements data in the other modalities. To reiterate this differs from a more typical missing

data scenario where an much smaller proportion of individuals are missing values in a subset

of the d features within a dataset.

I want to assess two types of partial data scenarios; i) where the data from each modality is

absent at random i.e. each cluster is equally likely to be have entities with no data recorded

and ii) where the data is missing from each modality due to its cluster membership i.e. one

or more clusters have no data recorded in a modality. I restrict my partial data experiments to

partial data where each individual has at most one non recorded modality.

I generate partial datasets as follows. Firstly a multi-modal dataset is generated (as described

in Section 3.3. Then to create a partial dataset entities are removed from a modality either at

random or based on their true cluster y. To create data partial at random, I randomly generate

a set of labels yNaN where each label is yNaNi ∈ {1, . . . ,m} where m is the number of modalities

in the dataset. Entities are removed from a modality based on their label in yNaN . To create

partial data based on cluster membership, I create a set of labels yNaN by merging the clusters

in y into m super-clusters (if m < nc where nc is the number of clusters in y) or splitting y into

m sub-clusters if (m > nc). If m = nc then I set yNaN = y. Again entities are removed from a

modality based on their label in yNaN .

3.4 Experiment Setup

I conduct three experiments. I evaluate i) the performance of my multi-modal integration

methods on a variety of different modality problems, ii) the adaptability of the integration

methods to an increasing number of modalities and iii) the ability of each integration method

to incorporate partial modalities where a subset of individuals do not have features in some of

the modalities.



3.4. Experiment Setup 94

3.4.1 Integration Methods

As described in Section 3.2, I evaluate several multi-modal similarity integration approaches.

• Similarity Network Fusion (SNF) — de facto standard approach for multi-omic in-

tegration and unsupervised clustering analysis. Similarity calculated through diffusion

across KNN graphs.

• NEighborhood Based Multi-Omic Clustering (NEMO) — Mean relative similarity

between nodes i and j based on a K-nearest Neighbourhood in each modality.

• Mean Si — Mean similarity between a pair of nodes i and j across all modalities.

• Extreme Mean — Mean "extreme" similarity/dissimilarity between a pair of nodes i

and j across all modalities. for each modality, pairwise similarity is thresholded to only

include very similar and very dissimilar connections.

• Concatenated Xi — All modalities are combined into a single feature matrix. Pairwise

similarity and network sparsification are subsequently performed.

I make use of a python implementation of SNF, the snfpy5 package. I use custom python

implementations for the NEMO, Mean Si, Extreme Mean and Concatenated Xi similarity

integrators. The final network produced by all similarity integration methods is created by

constructing a K-nearest Neighbour (KNN) Graph6 with K = 25. For the SNF affinity function

(Eq. 3.5), I use the original proposed hyperparameter settings for the SNF Kernel µ = 0.5 and

a value K = 25 to match the final KNN graph. Unless otherwise specified in the creation of

the pairwise similarity matrix, I make use of raw distance for the Concatenated Xi and Mean

Si methods, and the SNF affinity function for SNF, NEMO and Extreme Mean.

3.4.2 Clustering Algorithms

I perform community detection on the multi-modal graph networks using three distinct network

clustering algorithms7

• SBM — Micro-canonical Stochastic Block Model Peixoto (2018). Python graph-tool8

implementation Peixoto (2014).

• Leiden — Modularity maximisation using Leiden algorithm Traag et al. (2019). Python

igraph9 implementation Csardi and Nepusz (2006). The resolution hyperparameter is

selected using event sampling Jeub et al. (2018).

5. -– v0.2.2
6. Data with 2500 individuals is evaluated. K = 25 was found to produce networks of a desirable density based
on the results of Chapter 2.
7. See Section 1.5.1 for detailed discussion.
8. v2.45
9. v0.10.3

https://github.com/rmarkello/snfpy


3.4. Experiment Setup 95

• Spectral — Spectral decomposition and K-means clustering of "Random Walk" nor-

malised Laplacian Lrw = I −D−1A. Python spectralclusterer10 implementation

Q. Wang et al. (2018).

I evaluate the quality of the networks produced by the similarity integration methods using the

following network statistics

• Modularity y — Network modularity compares the observed number of edges within a

set of clusters to the number of edges expected under a null model (node degrees are

fixed and edges are placed at random). The modularity of a graph G is given by

Q =
1

2m ∑
i, j

[
Ai j− γ

kik j

2∗m

]
δ (Ci,C j)

where m is the number of edges in G, A is the adjacency matrix of G, ki is the degree

of node i and Ci is the cluster that node i belongs to. I calculate the modularity of the

ground truth clusters y.

• Triad participation ratio (TPR) y — is the fraction of nodes in cluster C that belong in

a triad,

f (C) =
|{u : u ∈C,{(v,w) : v,w ∈C,(u,v) ∈ E,(u,w) ∈ E,(v,w) ∈ E} ̸= /0}|

nc

where nc is the number of nodes in cluster c. I calculate the average TPR of the ground

truth clusters y.

• Assortativity — the Pearson correlation coefficient of degree between pairs of nodes

with an edge connecting them. It measures the propensity for edges to exist between

nodes of similar degrees. An explicit definition for degree assortativity can be found

in Eq. 21 in M. E. Newman (2003). Values range between [−1,1]. A positive value

indicates that nodes of similar degree connect. A negative value indicates that high

degree nodes are more likely to connect to low degree nodes.

• Mean Path Length — Mean length of shortest paths between all pairs of nodes in G.

• Mean degree k — Mean degree k of all nodes in G. The degree of node i is the number

of edges of between node i and other nodes in G.

• Median degree k — Median degree k of all nodes in G.

Modularity and TPR provides a measure of how well the true community structure has been

embedded in G. Modularity assesses how tightly knit the communities in G are. Communities

with higher modularity have higher internal density and are characterised by more connections

within the community than connections with nodes outside it.

10. v0.2.16
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TPR measures the fraction of nodes within a community that form triads. This metric draws

inspiration from observations on social networks that within communities, friends of a friend

tend to be common. In other words, if two individuals share a common friend, they are more

likely to be friends themselves. A good community can therefore be defined to be one that

contains many such friends of friends. Again this is a measure of internal density — the more

triads in a community, the denser the internal connectivity. Yang et al. J. Yang and Leskovec

(2012) showed that TPR is a reliable metric for detecting communities in real networks.

Assortativity, mean path length, mean and median degree capture distinct facets of the global

structure within a network. Mean and median degree provide a summary of the degree

distribution — whether the degree distribution is skewed, whether there is an abundance of

high or low degree nodes. Assortativity provides insight into the type of nodes that tend to

interconnect. This metric helps identify whether nodes with similar degrees are more likely to

be linked.

Mean path length, on the other hand, offers insight into the connectedness of communities

within the network. All my networks are constructed on the same data with the same KNN

hyperparameter and should have similar numbers of edges. Differences in path length are due

to differences in how edges connect the global structure. A low mean path length signifies high

interconnectivity between communities drawing nodes in distinct communities together. Con-

versely, a high mean path length suggests fewer inter-community edges and longer distances

between nodes, implying greater isolation between communities. These metrics collectively

provide a comprehensive overview of a network’s structural characteristics.

For a more detailed exploration of these network properties, please refer to Section 1.1, where

these metrics and their implications are discussed in greater detail.

3.4.3 Integration Method Performance

To evaluate the similarity integration methods, I desire a mixture of various modality problems.

I want to see both the effect of type of distribution of the clusters as well as the effect of

differences in the cluster information present in each modality. How well do the methods

handle noisy data? How well do the methods handle inconsistencies in inter and intra cluster

distances from modality to modality? I compare the performance of similarity integration

methods on datasets comprised of three generated modalities. This is reflective of real world

applications where a large number of modalities are not typically available/collected. For

example, the TCGA multi-omic datasets used in B. Wang et al. (2014) were comprised of

mRNA expression, DNA methylation and miRNA expression data.
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Table 3.1 shows the set of fifteen problems used to evaluate the performance of the integration

methods. The settings are listed by order of average ARI performance of SBM and Leiden

cluster methods on each individual modality11. I briefly describe some of the key modality

problems: Easy can be thought of as the default setting — a mixture of Gaussians gener-

ated with unchanged cluster information per modality. Cat evaluates the effect of categorical

distributed data. Noisy evaluates a high noise setting. Split evaluates settings with ground

truth clusters broken apart across modalities. Merged evaluates the converse where ground

truth clusters are combined together. 1Rand evaluates the addition of a discordant and un-

informative modality. Mixed Normal and Mixed Noisy evaluate effect of sets of modalities

with differences in cluster information in low and high noise settings respectively. Mixed Noisy

1Rand is the most challenging setting where each modality has high noise and one of the

modalities is uninformative.

For each modality problem, I split 2500 entities into 10 equal clusters. This number was

chosen to maintain consistency with Chapter 2, where 2,500 entities were used to evalu-

ate sparsification methods, thereby increasing confidence in the choice of sparsification. As

discussed in Section ??, using equally sized clusters helps isolate the effects of integration

and ensures greater consistency across generated modalities. A crucial step in the process

is the merging and splitting of clusters during data generation. When clusters are unequally

sized, the resulting data can be less consistent. For instance, a modality where two large

clusters are merged will be qualitatively different from one where two smaller clusters are

merged. The number of equally sized clusters, ten, was chosen as it strikes a balance between

the number of clusters where the three clustering algorithms perform best. Each generated

modality contains 50 features i.e. each Xi is a N×d, 2500 x 50, matrix with the distribution and

cluster information as described in Table 3.1. The merged clusters are created by randomly

merging y into 5 clusters. The merging is done at random and can be unequal e.g 6 clusters

in y merged into 1 cluster in yi with the remaining 4 clusters unchanged. The split clusters

are created by splitting the clusters in y into 20 clusters. Similar to the merged clusters this

process is done at random and can be unequal e.g. one cluster in y split into 11 subclusters

with the remaining 9 unchanged. A random modality is created by generating assigning each

entities to one of 10 equally sized clusters at random and generating the dataset with the

random labelling yi. Each modality problem is evaluated on 20 instances to better estimate

the accuracy of the similarity integration methods.

I repeat the evaluation using two metrics i) euclidean distance and ii) correlation. I evaluate

using both the raw distance and using SNF affinity (Eq 3.5).

11. Spectral clustering is not included in this ranking due to its high variability.
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Name X1 X2 X3
Categorical C-0 C-0 C-0
Easy G-0 G-0 G-0
Single Merged G-0 G-0 G-1
Single Noisy G-0 G-0 S-0
Split G-2 G-2 G-2
Mixed Normal G-1 G-1 G-2 Distributions
Merged G-1 G-1 G-1 G — Gaussian
Mixed All C-1 G-1 S-2 S — Student’s-t
Noisy S-0 S-0 S-0 C — Categorical
1Rand G-0 G-0 G-3
Mixed Noisy S-1 S-1 S-2 yi clusters
Mixed 1Rand G-1 G-2 G-3 0 — Unchanged
Noisy 1Rand S-0 S-0 S-3 1 — Merged
Mixed Noisy 1Rand S-1 S-2 S-3 2 — Split
2Rand G-0 G-3 G-3 3 — Random

Table 3.1: Modularity Problems for Evaluating Similarity Integration Methods. 2500
samples are split into 10 equally sized clusters, with three modalities are generated for
each modality problem. Each modality Xi is characterised by a distribution — Gaussian
(G), Student’s-t (S), or Categorical (C) — and by cluster information: 0) yi identical to the
ground truth y, 1) yi with 5 clusters merged from y, 2) yi produced by splitting y into 20
sub-clusters, and 3) yi containing 10 random, equally sized clusters unrelated to y. These
variations allow for a comprehensive assessment of how well similarity integration methods
can handle different cluster structures and data distributions.
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3.4.4 Number of Modalities

To evaluate ability of different similarity integration methods to handle increasing number

of modalities, I create modality problems by randomly sampling the distribution and cluster

information of Xi and yi. I consider 6 different sets of distributions and cluster types. Easy

and Noisy are consistent modalities where the clusters are identical to y and the distributions

do not change from mixtures of Gaussians and Student’s-ts respectively. Again for the All

modality problem, I keep the clusters unchanged but additionally randomly sample a distri-

bution from the three possible types Gaussian, Student’s-t and Categorical. In MergeSplit I

only use mixture of Gaussians distributed data but randomly merge or split the clusters in

y into 5 or 20 clusters in yi (the same settings used in the original modality problems in

Section 3.4.3). In Mixture I only use mixture of Gaussian distributed data but allow any of the

possible types of cluster information; unchanged, merged, split or random. Mixture introduces

random unrelated modalities that add noise to the set of distances between nodes i and j,

{S(k)i j : k∈ 1, . . . ,m}. The final modality problem I consider is All. In this setting any combination

of distribution and cluster information are possible.

I evaluate the similarity integration methods on m ∈ {3,5,10,15,20,30,40} modalities. For

each number of modalities, I evaluate 5 instances of the data. I use the euclidean metric in

my evaluations.

Name Distribution yi

Easy di ∈ [G] ci ∈ [0]
Noisy di ∈ [S] ci ∈ [0]
All di ∈ [G,S,C] ci ∈ [0]
MergeSplit di ∈ [G] ci ∈ [1,2]
Mixture di ∈ [G] ci ∈ [0,1,2,3]
Any di ∈ [G,S,C] ci ∈ [0,1,2,3]

Table 3.2: Modularity Settings for Testing Integration Methods Across Increasing
Modalities. Set of modularity settings used to explore ability of integration methods to scale
with the number of modalities. For each modality, a distribution di is randomly selected for the
features Xi, and a cluster transformation ci is applied to the ground truth labels y to produce
yi. The labels for the distributions and transformations align with those detailed in Table 3.1.
These settings are specifically designed to challenge the ability of integration methods to
maintain performance as the number of modalities increases.
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3.4.5 Partial Modalities

I evaluate the effect of partial modality on the similarity integration methods. To include entities

with missing modalities, I adapt the methods in the following ways

• Similarity Network Fusion (SNF) — For each pairwise modality distance S(K), the

pairwise value between a node i with NaN in Xk and any node j is set to max dis-

tance/dissimilarity for that modality. SNF is then computed as normal with max dissim-

ilarity included.

• NEighborhood Based Multi-Omic Clustering (NEMO) — NEMO was developed to

analyse partial data. The mean relative similarity for any pair of nodes i and j is

computed over the modalities where both nodes have recorded data.

• Concatenated Xi — Feature mean value imputation in Xk for all nodes with NaN

values. Then distance/similarity calculated as normal.

• Mean Si imputing Max — For each pairwise modality distance S(K), the pairwise value

between a node i with NaN in Xk and any node j is set to max distance/dissimilarity for

that modality. Mean similarity then computed between a pair of nodes i and j across

all modalities.

• Mean Si ignoring NaN — The mean similarity for any pair of nodes i and j is computed

over the modalities where both nodes have recorded data.

• Extreme Mean — Thresholding is performed on the pairwise similarity between nodes

with recorded values in the modality. The mean similarity for any pair of nodes i and

j is computed over the modalities where both nodes have recorded data. If all values

between i and j are NaN after thresholding (including NaN for where i has no recorded

data in a modality) then the dissimilarity is set to max.

It is important to note how the choice of NaN imputation will affect the similarity integration

methods. The KNN step of SNF is unlikely to include individuals with partial modalities due to

the max dissimilarity imputation. Partial individuals will significantly alter the diffusion step and

will require extremely high similarity in the nodes neighbours in other modalities to be included

in the final network after KNN sparsification. NEMO is designed to incorporate partial data and

places importance on relative similarity in other modalities. It is similar to Mean Si ignoring

NaN. For both of these methods a pair of entities with moderate similarity in all modalities will

score lower than a pair of partial entities with high similarity in only one shared modality.

I make use of mean imputation in the features of Concatenated Xi. Here two individuals with

no recorded values in a modality will score more similar as there will be no distance between

the two in the features of that modality. Mean Si imputing Max "punishes" a pair of entities

for having no recorded data. A pair of entities with moderate similarity in all modalities will

be scored higher than a pair of entities with high similarity in only one shared modality. For
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Extreme Mean the only values of interest between a pair of entities are the values where they

both share recorded data and have data that has been retained after thresholding. It is similar

to NEMO and Mean Si ignoring NaN but entities are more likely to have no shared values due

to the thresholding step.

For the partial data evaluation, I select five of the modality problems in Table 3.1 for evaluation;

Easy, Mixed Normal, 1Rand, Noisy and Mixed Noisy 1Rand. I create five instances of each

modality problem and then mask entities from modalities i) at random and ii) based on cluster

membership. I mask a maximum of one modality per entity. I compare the AMI of labels

predicted by Leiden and SBM clustering to the both the truth cluster membership y and the

list of removed modalities per entity — yNaN .

3.5 Results

3.5.1 Integration Networks

Clustering Performance

In Figure 3.2, the adjusted mutual information (AMI) performance of five similarity integration

methods on 20 instances of 15 different modality are shown for A) Stochastic Block Model

(SBM), B) Leiden and C) Spectral clustering methods. As a baseline reference, the average

performance of the respective clustering algorithm on networks created from each single

modality is also shown (Avg Individual Gi). The modality problems are ordered by the mean

performance of all clustering algorithms on individual modality networks.

SBM clustering on SNF and NEMO networks consistently outperforms Mean Si and Con-

catenated Xi networks (Figure 3.2A). There is very little difference in performance between

SNF and Mean Si for Leiden clustering (Figure 3.2B) on more challenging modality problems

(Mixed Noisy onwards). SNF performs better on Split clusters and Mean Si performs better

when clusters are merged. There is a significant improvement in the SNF network over the

Mean Si for the Spectral algorithm (Figure 3.2C) on more challenging modality problems.

The most notable differences in clustering performance can be seen on Split and Merged

modality problems. Consider Spectral clustering (Figure 3.2C) on Split, SNF and NEMO are

nearly perfectly accurate where as Concatenated Xi and Mean Si only match the average

performance on individual modality networks. On Merged, the opposite can be seen where

SNF and NEMO match the average Gi and Concatenated Xi and Mean Si perform well. The

performances on the other clustering algorithms reinforce this behaviour where SNF and

NEMO struggle to incorporate merged clusters and Mean Si and Concatenated Si struggle

with split clusters.
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Extreme Mean has the worst performance on all clustering algorithms. Concatenated Xi is

very similar in performance to Mean Si. Perhaps the simplest integration method, Concat-

enated Xi, does not see any drop in performance over the more complex methods on less

challenging clustering problems. It is notable that the Concatenated Xi network produced in

datasets containing Mixed Student’s-t distributed data are significantly worse for clustering.

All 3 clustering algorithms show a significant drop in performance compared to Mean Si.

While a simpler method in comparison to SNF, NEMO has very similar performance. Not-

ably, NEMO networks also see a significant drop in performance of the Leiden and Spectral

algorithms on Merged clusters. Like SNF, both SBM and Spectral clustering see significant

improvement on NEMO networks over Mean Si and Concatenated Xi. NEMO does not handle

merged networks as well as SNF and the drop in performance is more significant.

In Table 3.3, we summarise the performance of the integration methods by on a subset of the

modality problems. The maximum and average AMI performance of the clustering algorithms

on the networks of the five similarity integration methods on 20 instances of each problem

is shown. Reinforcing Figure 3.2, the maximum performance of SNF and Mean Si is closely

matched across all problems. There is far greater variation in the average performance —

on Split, 1Rand and Mixed 1Rand the average performance of Mean Si is significantly lower.

Single Merged, Merged and Mixed Noisy all contain multiple merged cluster modalities and

we can see reduction in SNF and NEMO performance is consistent both in maximum and

average performance.

Effect of SNF Affinity Kernel

In Figure 3.3, the Log difference in clustering performance between networks constructed

using SNF Affinity (Eq. 3.5) and raw distance12 is shown for Mean Si, NEMO and SNF on

20 instances of the 15 modality problems using both correlation and euclidean distances.

SNF does not gain a consistent benefit from the use of the SNF Affinity kernel. SNF Affinity

provides a boost in performance on Split, 1Rand and Mixed 1Rand problems. This is data

where the clusters are split apart and fractured (each cluster is divided across uncorrelated

clusters in the random modality). In contrast, the raw distance is more informative in modality

problems where clusters are merged together in multiple modalities; Single Merged, Merged,

Mixed Normal and Mixed Noisy. Mean Si shows similar changes in performance but not as

pronounced — networks created using SNF Affinity outperforming distance on split cluster

data but worse on merged data. NEMO shows a consistent improvement in AMI when using

SNF Affinity over raw distance. The benefit can be seen on all modality problems notably

Noisy 1Rand and Mixed Noisy 1Rand. Unlike the other integration methods, the improvement

in performance does not depend on the type of modality problem.

12. Log Diff = log(Affinity AMI)− log(Distance AMI)
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Figure 3.3: Comparison of Use of SNF Affinity vs. Raw Distance on Clustering
Performance — SNF, NEMO, Mean Si. Log difference in SBM and Leiden clustering AMI
performance for networks constructed using SNF Affinity (Eq. 3.5) and raw distance for both
euclidean and correlation distance metrics across 40 instances of each modality problem are
shown. NEMO sees a consistent benefit in using SNF affinity over raw distance. For Mean
Si and SNF, the optimal choice changes depending on the clustering problem. We can see
in high noise problems and problems involving Merged clusters raw distance is significantly
preferable to the SNF Affinity kernel.
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Figure 3.4 again shows the Log difference in performance between SNF Affinity and raw

distance but includes Concatenated Xi and Extreme Mean integration methods. The use of

SNF Affinity over raw distance shows a striking drop in performance for Concatenated Xi. In

contrast, Extreme Mean benefits significantly from SNF Affinity. On problems including Mixed

Student’s-t data the SNF Affinity provides a pronounced boost over raw distance. This is likely

due to the outliers present in Mixed Student’s-t data. Extreme Mean filters similarity values

to include only the most similar and most dissimilar pairwise values. Outlier distances can be

very large and will have a very strong effect on the final similarity between a pair of nodes.

When using SNF Affinity the effect of outliers is reduced as similarity values are restricted to

[0,1] and so outliers cannot have a disproportionate effect.

Figure 3.4: Comparison of Use of SNF Affinity vs. Raw Distance on Clustering
Performance — All Methods. Log difference in SBM and Leiden clustering AMI performance
for networks constructed using SNF Affinity (Eq 3.5) and raw distance for both euclidean and
correlation distance metrics across 40 instances of each modality problem. Concatenated
Xi performs significantly worse when a KNN network is constructed from SNF Affinity rather
than raw distance across all modality problems. Extreme Mean receives a significant jump
in performance when using SNF Affinity in noisy settings. This boost is a result of the SNF
Affinity removing disproportionate effects of outlier distances.
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Comparison to Single Modality Networks

Figure 3.5 shows the Log AMI difference in performance of SNF, Mean Si and NEMO to the

average individual network modality for A) SBM and B) Leiden clustering algorithms on 40

instances of 15 modality problems using both euclidean and correlation metrics. SNF does

not show a significant improvement in performance over Mean Si. When including networks

constructed using the correlation metric, we can the improvement in the performance of SBM

clustering (Figure 3.5A) on SNF and NEMO networks over Mean Si is not pronounced with

the exception of data containing random modalities. From Figure 3.5B, again we can see that

SNF and NEMO do not handle problems with multiple merged modalities as well as Mean

Si but they are superior on Split clusters. NEMO’s drop in performance on Merged clusters

are more extreme than SNF but it matches SNF in all other scenarios. All three methods

outperform the average performance of networks constructed on each modality.

Figure 3.5: Comparison of Multi-modal Integration vs Single Modality Networks. Log
AMI difference between average individual networks and SNF, Mean Si and NEMO for A)
SBM and B) Leiden clustering on 40 instances of 15 modality problems using both euclidean
and correlation metrics. SNF, NEMO and Mean Si have very similar performance across
all modality problems. The lower SBM clustering performance of Mean Si networks visible
in Figure 3.2A is reduced with the inclusion of the correlation metric. NEMO and SNF
struggle with multiple merged modalities and all methods outperform the average clustering
performance on networks constructed on each modality.
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Network Properties

In Figure 3.6, several properties of the networks produced by the similarity integration methods

are shown for the 15 modality problems. The change in A) Modularity of true clusters y, B)

Triad Participation Ratio (TPR) of true clusters y, C) Assortativity, D) Mean Path Length,

E) Mean Degree and F) Median degree across the modality problems are shown. For all

integration methods, a KNN network with K = 25 and 2500 nodes is constructed.

We can see Mean Si and Concatenated Xi produces the most modular networks (3.6A). They

are significantly more modular than SNF networks on problems containing multiple merged

modalities; Single Merged, Merged, Mixed Normal and Mixed All. Extreme Mean shows an

increase in Modularity relative to other network on problems containing Mixed Student’s-t data;

Single Noisy, Noisy, Mixed Noisy and Noisy 1Rand. SNF networks are as modular as the Mean

Si and Concatenated Xi networks on data without merged clusters. NEMO is significantly less

modular than these networks on all modality problems.

In Figure 3.6B the TPR rate is consistently high for all methods with the exception of Extreme

Mean. This indicates there is strong internal connectivity within the clusters. Nearly all nodes

are triads and it is only on the more challenging noisy modality problems where the rate

of triads within clusters begins to drop. As the modality problems increase in difficulty, all

methods show a decrease in TPR. Mean Si is the most resistant and is consistently high.

From Figure 3.6C, we can see SNF networks have positive degree assortativity coefficients

on nearly all modality problems. The correlation is not extremely strong but on average con-

nections between nodes of the same degree are more likely than connections between high

and low degree nodes. In contrast, Mean Si and Concatenated Xi networks have negative

assortativity but the strength of the correlation is not very strong. NEMO and Extreme Mean

show neutral assortativity for most modality problems and within these networks connections

between all types of node degree are equally likely. One notable pattern is the drop in assort-

ivity shown by Mean Si and Concatenated Xi networks on modality problems containing noisy

modalities. In contrast, NEMO networks show an increase in degree assortativity on these

problems.

Figure 3.6D shows the Mean Path Length for all networks drops as the modality problems

becomes more challenging. NEMO and Extreme are the most consistent but this are result

of the high interconnectivity i.e. lower mean path length on easier problems. An decrease in

mean path length corresponds to clusters becoming less distinct as more inter cluster edges

are present in the network. The more connections between clusters the lower the average

path length as the network becomes easier to traverse. Mean Si and Concatenated Xi show

a significant drop in mean length on data containing Mixed Student’s-t distributed modalities.

SNF, NEMO and Extreme Mean are more resistant to the noisy data and do not show a

decrease.
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Figure 3.6: Comparison of the Network Properties of Integration Methods. The A)
Modularity y, B) TPR y, C) Assortativity, D) Mean path length, E) Mean Degree and F) Median
Degree are shown for 20 instances of networks on all 15 modality problems. Mean Si and
Concatenated Xi have very similar properties, with Mean Si slightly more modular (A) and
more likely to contain edges between high and low degree nodes (C). Unlike other methods,
SNF structure is less affected by Mixed Student’s-t distributed data (D-F). Its density does
not increase and the mean path length is consistent. From C), we can see SNF has positive
assortativity — connections are more likely between nodes of similar degree. NEMO networks
are neutral and connections between nodes of all degrees are equally likely.
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The same number of neighbours (K = 25) are assigned to each node in each network. As a

result, any increase in mean degree i.e. an increase in network density and total number of

edges in the network, implies that less nodes are mutual nearest neighbours. Mutual nearest

neighbours are nodes which include each other in their set of nearest neighbours (NN). A

drop in density occurs when nodes are mutual NN because only one single edge is added

to the network instead of the two edges that would exist if they were not mutual NNs. As

seen in Figure 3.6E, All networks except SNF show an increase in mean degree on modality

problems containing Mixed Student’s-t data. Mean Si and Concatenated Xi consistently have

the highest density of all networks.

Very different behaviours occur in the median degree of the distribution however. From Fig-

ure 3.6F we can see Mean Si and Concatenated Xi display a decrease in median degree

where NEMO and Extreme Mean show an increase. This can be explained by the change

in assortativity on the networks. In NEMO and Extreme Mean the additional edges that

result in an increase in density occur between nodes of similar degree. In Mean Si and

Concatenated Xi, these connections are between high and low degree nodes. When we

consider the corresponding decrease in mean path length seen on these networks, these

edges likely occur between clusters rather than within clusters.

3.5.2 Influence of Number of Modalities

Clustering Performance

In Figure 3.7, the evolution of Adjusted Mutual Information (AMI) clustering performance

is depicted with an increasing number of modalities for the Stochastic Block Model (SBM)

clustering algorithm across five instances, denoted as A) Easy, B) Noisy, C) All, D) MergeSplit,

E) Mixture, and F) Any modality problems. Notably, both Similarity Network Fusion (SNF) and

NEighborhood based Multi-Omics clustering (NEMO) demonstrate a trend of converging to-

wards perfect detection as the number of modalities rises. This holds true even for challenging

scenarios such as noisy data with a high number of outliers (Figure 3.7B) and data containing

uncorrelated clusters (Figure 3.7E and 3.7F).

Surprisingly, Extreme Mean exhibits a significant improvement in performance with an increas-

ing number of modalities, surpassing Mean Si and Concatenated Xi. However, its convergence

is slower than that of SNF and NEMO. Extreme Mean struggles when dealing with noisy data

containing outliers, as is particularly evident in Figure 3.7B and Figure 3.7F. Mean Si and

Concatenated Xi perform similarly to one another but consistently underfit the data, reaching

a maximum AMI of 0.9. While these methods do not decrease in performance, they tend to

fall short of capturing the full complexity of the underlying cluster structure.
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Figure 3.7: Change in AMI Performance With Increasing Number of Modalities. Change
in AMI performance with increasing number of modalities for SBM clustering algorithm on
5 instances of A) Easy, B) Noisy, C) All, D) MergeSplit, E) Mixture and F) Any modality
problems. SNF and NEMO converge on perfect detection as the number of modalities
increase. This is true for both noisy data with a high number of outliers (B) as well as
data containing uncorrelated clusters (E and F). Extreme Mean improves dramatically in
performance with more modalities even outperforming Mean Si and Concatenated Xi. Its
convergence is much slower than SNF and NEMO. As seen in B) and F), Extreme Mean
struggles with noisy data containing outliers. Mean Si and Concatenated Xi perform similarly
but consistently underfit the data and reach a maximum AMI of 0.9.
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Ground Truth Modularity

Figure 3.8 shows the change in modularity of ground truth clusters (y) is examined with an

increasing number of modalities across five instances denoted as A) Easy, B) Noisy, C) All,

D) MergeSplit, E) Mixture, and F) Any modality problems. The modularity of ground truth

clusters in SNF, NEMO, and Mean Si networks plateaus at 0.9. In fact there is no network

where the maximum modularity of the ground truth clusters does not exceed 0.9 despite

perfect clustering performance (AMI = 1) of SNF.

In contrast to its lower clustering performance, Mean Si exhibits modularity levels on par with

SNF. However, it is intriguing that Extreme Mean fails to achieve high modularity in Panels C)

and E), when its corresponding clustering performance (Figure 3.7C and 3.7E) being close to

the maximum and higher than the more modular Mean Si.

Figure 3.8: Change in Ground Truth Modularity With Increasing Number of Modalities..
Change modularity of ground truth clusters y with increasing number of modalities on 5
instances of A) Easy, B) Noisy, C) All, D) MergeSplit, E) Mixture and F) Any modality
problems. The maximum modularity of the ground truth clusters does not exceed 0.9 for any
network. Unlike its clustering performance, Mean Si modularity matches SNF. Surprisingly,
Extreme Mean fails to achieve high modularity in Panels C) and E) but the corresponding
clustering performance (Figure 3.7C and 3.7E) is close to maximum and higher than the more
modular Mean Si.
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Connected Components

Figure 3.9 shows the change in the number of components in the network is examined with

an increasing number of modalities across five instances denoted as A) Easy, B) Noisy, C)

All, D) MergeSplit, E) Mixture, and F) Any modality problems. As the number of modalities

increases, the networks consistently split into separate components.

The SNF network consistently exhibits the phenomenon of splitting into multiple components

across all modality problems. Notably, it is the only method to produce distinct components

on the Noisy problem (B). Achieving a perfect AMI of 1.0 (Figure 3.7), the ten components

produced by SNF in A-E correspond to the ground truth clusters. Interestingly, Mean Si also

generates 10 separate components but falls short of achieving an AMI of 1.0. In contrast,

Extreme Mean networks do not split into separate components, while NEMO only exhibits

splitting in instances A) Easy and C) All modality problems. This diverse behaviour across

methods and modalities underscores the complexity of network dynamics in response to an

increasing number of modalities.
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Figure 3.9: Change in Number of Network Components With Increasing Number of
Modalities. Change in number of components in the network for increasing number of
modalities on 5 instances of A) Easy, B) Noisy, C) ALL, D) MergeSplit, E) Mixture and F)
Any modality problems. The SNF network consistently splits into multiple components across
all modality problems and is the only method to produce distinct components on the Noisy
problem (B). With a perfect AMI of 1.0 (Figure 3.7), the ten components produced by SNF in
A-E correspond to the ground truth clusters. Interestingly, Mean Si also produces 10 separate
components but fails to achieve an AMI of 1.0. Extreme Mean networks do not into separate
components while NEMO only splits on the A) Easy and C) All modality problems.
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3.5.3 Effect of Partial Data

Clustering Performance

Figure 3.10 illustrates the variation in SBM AMI performance for increasing fraction of nodes

with data partial at random across five instances of A) Easy, B) Mixed Normal, C) 1Rand, D)

Noisy, and E) Mixed Noisy 1Rand modality problems. NEMO emerges as the most resilient

method to partial data. It displays the lowest reduction in performance across all five modality

problems. The performance of SNF degrades significantly with any inclusion of partial data.

Surprisingly, as the level of partial data increases the performance does not degrade further.

Mean ignoring NaN initially is resistant to data partial at random in the Easy and Mixed

Normal modality problems (Figure 3.10A & B) but once a threshold of partial data is crossed

its performance drops. On the more challenging modality problem it displays a consistent

reduction for all levels of partial data (Figure 3.10C-E).

Figure 3.10: Comparison of AMI Performance of Integration Methods on Data Partial At
Random. Change in SBM AMI performance for data partial at random on 5 instances of A)
Easy, B) Mixed Normal, C) 1Rand, D) Noisy and E) Mixed Noisy 1Rand modality problems.
Extreme Mean is the least affected by partial data across all modality problems showing little
to no change in performance. Mean ignoring NaN is more resistant to partial data than other
methods up to a certain level of partial data before dropping in performance (A and B). SNF
is highly sensitive to partial data and initially shows a significant drop in performance but is
stable thereafter. Mean imputing Max performance degrades quickly with partial data in Noisy
modality problems (D and E).
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Figure 3.11 shows the change in SBM clustering AMI for cluster based partial data across

five instances of modality problems: A) Easy, B) Mixed Normal, C) 1Rand, D) Noisy, and

E) Mixed Noisy 1Rand. The performance of methods demonstrates improvement on certain

modalities with cluster based partial data. As the fraction of nodes with partial data increases,

the consistency of clusters within each modality improves. The impact of partial data is most

pronounced at 50% when there are enough members in the cluster to introduce noise to

pairwise similarity within a modality, but not sufficient to form a robust cluster. When 100%

of nodes have a NaN Xi, it results in only two measurements of pairwise similarity from the

modalities. This explains the heightened noise observed in all methods in the 1Rand modality

(Figure 3.11C) at higher levels of partial data. For the majority of nodes, half of the similarity

measurements are entirely random under these conditions.

In this setting, all methods exhibit increased resilience to partial data compared to data

partial at random. The improvement of NEMO over other methods is significantly reduced.

Mean ignoring NaN particularly demonstrates highly improved performance. Although there

is notably more variance in the performance of methods with cluster based partial data over

data partial at random, this variance increase aligns with consistently higher performance.

Mean ignoring NaN consistently shows increased performance for 100% partial data com-

pared to no partial data. Other methods also display similar performance increases though

no to the same extent. At 100% partial data, entire clusters have been removed from different

Xi, resulting in each modality containing fewer clusters. In our underlying data generation

procedure we strategically place clusters close enough to one another to ensure overlap.

Consequently, when clusters are removed, the increased distance between clusters facilitates

easier distinction. Additionally, in merged data, clusters are no longer combined together,

making the remaining clusters easier to identify.

In Figure 3.12, the AMI performance of SBM and Leiden algorithms on five instances of Easy

modality problem with data partial at random and based on cluster is displayed. We show A)

SBM partial at random, B) Leiden partial at random, C) SBM partial based on cluster and D)

Leiden partial based on cluster. Leiden clustering on Extreme Mean, Mean ignoring NaN, and

Concatenated Xi networks appears to be relatively unaffected by cluster-based partial data

(Figure 3.12D). In the case of data missing at random, Mean ignoring NaN and Concatenated

Xi exhibit higher resilience compared to SBM clustering (Figure 3.12B vs 3.12A) but show a

decline in performance at higher levels of missing data. On SNF networks, Leiden clustering

experiences a significant drop in performance, accompanied by an increase in the variance of

AMI (Figure 3.12B & D). We can see Leiden clustering is more resilient in general but shows

sharp declines when the level of partial data reaches a level that corrupts the local structure

(Figure 3.12B).
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Figure 3.11: Comparison of AMI Performance of Integration Methods on Data Partial
Based on Cluster. Change in SBM AMI performance for data partial based on cluster on
5 instances of A) Easy, B) Mixed Normal, C) 1Rand, D) Noisy and E) Mixed Noisy 1Rand
modality problems. As the fraction of nodes with partial data increases, the clusters in each
modality become more consistent. The effect of partial data is most severe at 50% when the
enough members of the cluster remain to add noise to the pairwise similarity within a modality
but not enough to form a strong cluster. When 100% of nodes have a NaN Xi, we only have
two measurements of pairwise similarity from the modalities. This explains the increased noise
of all methods in 1Rand (C) at higher levels of partial data — for a majority of nodes half of
the similarity measurements are completely random.
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Figure 3.12: AMI Performance of Leiden and SBM Algorithms on Easy Modality Problem
with Increasing Partial Data. AMI performance of SBM and Leiden algorithms on five
instances of Easy modality problem with data partial at random and based on cluster. We
show A) SBM partial at random, B) Leiden partial at random, C) SBM partial based on cluster
and D) Leiden partial based on cluster. Leiden clustering on Extreme Mean, Mean ignoring
NaN and Concatenated Xi networks is relatively unaffected by cluster-based partial data.
For data partial at random, Mean ignoring NaN and Concatenated Xi are more resilient than
SBM clustering but exhibit a drop in performance at higher levels. On SNF networks, Leiden
clustering shows an dramatic drop in performance and an increase in the variance of AMI.
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Relationship to missing labels

Figure 3.13 shows the SBM AMI between y and yNaN on five instances of Easy modality

problem with data missing at random and based on cluster. We show A) y partial at random,

B) yNaN partial at random, C) y partial based on cluster and D) yNaN partial based on cluster.

yNaN AMI measures the agreement between the list of modalities each individual is absent

from and the discovered clusters. The higher this AMI is the more influence partial data has

on the clustering process. We can see SNF’s initial drop in y AMI performance corresponds to

a significant increase in yNaN AMI for data both partial at random and cluster based. While the

similarity between yNaN and the predicted clusters increases, the y AMI remains consistent.

The transition in y clustering performance of Mean ignoring NaN on data partial at random

(Figure 3.13A) is amplified in yNaN and the corruption of the cluster structure due to partial

data is clearly visible (Figure 3.13B). Surprisingly, Mean imputing Max’s yNaN AMI is lower

than Mean ignoring NaN at higher levels of partial data despite the worse y performance.

This is true for both data partial at random and cluster based (Figure 3.13B & D).

NEMO and Extreme Mean show very interesting behaviour in their yNaN AMI. Both are highly

resistant to data partial at random and bear little resemblance to the list of absent modalities of

each individual (Figure 3.13B). Yet for cluster based partial data (Figure 3.13D), they display a

steady increase in yNaN AMI. NEMO and Extreme Mean offer potential measures for detecting

whether partial data is related to underlying clusters within the data — a low resemblance

between clusters detected on NEMO and the labels of absent modalities could be indicative

data is partial at random. Further investigation is required but the significant difference in

behaviour of these methods across the types of partial data is promising.

Ground Truth Modularity

In Figure 3.14, changes in A) Modularity y, B) y SBM AMI, and C) yNaN SBM AMI on five

instances of Easy data with values partially missing at random are depicted. With 10% partial

data, SNF’s AMI experiences a significant drop, while its modularity is barely affected. The

modularity of Extreme Mean increases, yet its cluster performance remains stable across

all levels of partial data. Although NEMO exhibits slight changes in modularity, the decline

in performance is much more pronounced. These disparities between AMI and modularity

underscore the limitations of modularity as an alternative metric for accuracy in situations

where ground truth labels are absent.
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Figure 3.13: SBM AMI Between y and yNaN on the Easy Modality Problem With
Increasing Partial Data. SBM AMI between y and yNaN on five instances of Easy modality
problem with data partial at random and based on cluster. We show A) y partial at random,
B) yNaN partial at random, C) y partial based on cluster and D) yNaN partial based on cluster.
SNF is the most significantly affected by partial both at random and based on cluster. Mean
ignoring NaN experiences a change in resistance when around 50% of individuals are absent
at random from an Xi. It rapidly drops in performance and becomes more similar to yNaN .
Concatenated Xi and Mean imputing Max quickly deteriorate in performance and similar to
SNF quickly align with yNaN
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Figure 3.14: Effects of Data Partial at Random on Clustering Metrics: Modularity and
SBM AMI. Changes in A) Modularity y, B) y SBM AMI and C) yNaN SBM AMI on 5 instances
of Easy data with values partial at random. At 10% partial data, SNF’s AMI drops significantly
yet its modularity is barely affected. Extreme Mean modularity increases with inclusion of
partial data yet its cluster performance remains stable across all levels of partial data. While
NEMO shows a slight change in modularity, the drop in performance is much more significant.
These differences between AMI and modularity highlight the shortcomings of modularity as
an alternative metric for accuracy in situations without ground truth labels.

3.6 Discussion

SNF does not emerge from this analysis as the clear choice of integration method. On key

modality problems involving merged clusters, it is outperformed by simpler approaches such

as Mean Si (Figure 3.2 & Table 3.3). Merged clusters are particularly pertinent for disease

subtype analysis where our expectations is that there will be a significant amount of overlap

between subtypes on several modalities. For the integration of partial modalities, again a

simpler approach, NEMO, is a far more optimal choice of algorithm (Figure 3.10 & 3.11).

The diffusion approach of SNF does show improvements in a number of scenarios. Most

notably, the incorporation of random modalities (1Rand) and Split clusters. Furthermore, its

mean clustering performance is more consistent with SBM and Spectral clustering performing

better across most modality problems on SNF networks than Mean Si (Figure 3.2 & Table 3.3).

That said with a different choice of metric the gap between the Mean Si and SNF on SBM and

Spectral clustering shrinks (see Figure B.1 and Figure 3.5A).

Surprisingly, the SNF affinity kernel does not provide a significant increase in the performance

of SNF over raw distance (Figure 3.3). NEMO consistently benefits from the effects of the

scaled exponential kernel which incorporates the distance to the nearest neighbours of both

nodes. The scaled affinity takes into account a nodes local neighbourhood and normalised.
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This both improves the KNN selection of NEMO and smooths out the pairwise similarity values

from modality to modality improving the relative similarity calculation. While the affinity kernel

is a core component of NEMO, SNF is more flexible and can accept many different similarity

functions including raw distance.

Consistency of pairwise similarity scores across modalities emerges as single most important

factor differentiating integration method performance. The benefit and drawbacks of KNN

selection in SNF and NEMO is highlighted by differences in consistency. Mean Si is more

optimal in Merged clusters. In Merged clusters, two ground truth clusters are combined and

the points of both clusters are placed at random around a single cluster centre. On average the

similarity of members of a cluster is quite high. But while the average similarity is high, the K

nearest neighbours of a particular node are just as likely to contain nodes from another cluster

as its own. Across multiple modalities the increased similarity to nodes in the second cluster

will drop while the similarity to nodes within a cluster will remain high. Mean Si successfully

identifies this. SNF and NEMO however do not calculate similarity using nodes that are not

in a node’s K nearest neighbours. With multiple merged clusters, the neighbours of a node

selected in each modality will consistently contain nodes from other clusters increasing the

difficulty of successfully identifying nodes within a cluster.

On the other hand, SNF and NEMO show strong performance on Split modality problems.

In Split, clusters are separated apart. A node’s K nearest neighbours will contain members

of its cluster. Across different modalities, the particular neighbours might change but all will

originate from the same cluster. For Mean Si, the similarity between nodes within a sub-cluster

will remain high but for the rest of the sub-cluster there will be low similarity. As we aggregate

across modalities, the similarity between nodes within a cluster will oscillate between high and

low reducing their overall similarity and increasing the difficulty of connecting nodes within a

cluster.

The true advantages of SNF and NEMO become more apparent as the number of modalities

increases, as depicted in Figure 3.7. The KNN selection process plays a crucial role in filtering

out noise. Although the K-nearest neighbours (KNNs) of each node may not consistently

include members of its cluster, the KNN step within each modality tends to eliminate more

non-cluster members than actual cluster members. In contrast, Mean Si faces challenges in

effectively leveraging the information from additional clusters. While its performance does not

decline, it struggles to capitalise on the information gained from extra clusters, resulting in a

plateau in performance as the number of clusters increases.

Even more than SNF and NEMO’s performances, the clustering performance of Extreme

Mean underscores the advantages that similarity filtering can offer. In Chapter 2, I demon-

strated that thresholding leads to sub-optimal community structure. Extreme Mean, being a

variant of thresholding, exhibits subpar performance on multi-modal data, reaffirming these
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observations (see Figure 3.2). Nevertheless, the notable improvement in the performance

of Extreme Mean over Mean Si as the number of modalities increases (refer to Figure 3.7)

underscores the positive impact of a filtering process. Even with a less effective approach like

thresholding, there is an observable enhancement in community structure.

It must be noted that the addition of corruptive modalities containing unrelated community

structure (random cluster information) can have a significant impact on the ability of integra-

tion methods to detect communities robustly. If we consider the original modality problems

using three modalities — Easy, 1Rand and 2Rand (Figure 3.2). There is a slight drop in

performance of most methods on 1Rand but it is not significant. The random modality is

successfully incorporated. However, on 2Rand the performance drops significantly. While the

2Rand example is extreme, it is illustrative of the dangers of including additional modalities.

Not all modalities will necessarily contain the community information we are seeking to identify.

That said, the strong performance of all methods in the most challenging problems Mixture

and Any (Figure 3.7) illustrates that these integration methods are quite robust.

SNF struggles significantly with partial data. It is highly sensitive to partial data and shows a

significant drop in performance with its inclusion (Figures 3.10 & 3.11). In contrast, NEMO is a

method developed with partial data in mind and the benefit shows. It is highly resistant to par-

tial modalities and shows the lowest drop in performance as the rate of partial data increases.

Within the methods shown here, partial data strategies that focus only on shared modalities

and avoid punishing increased uncertainty show more success — Mean Ignoring NaN, NEMO

and Extreme Mean. Interestingly Mean Ignoring NaN begins to struggle after a threshold of

partial data is reached. The methods that filter similarity values prior to aggregating, Extreme

Mean and NEMO, are more consistent across all levels of partial data.

The differences in behaviour between cluster based partial data and data partial at random is

highly remarkable. Most notably certain methods improve in performance with cluster based

partial data over their complete versions (Figures 3.10 & 3.11). This has significant implica-

tions. As discussed in Section 1.4, partial data is typically removed from analysis. Yet here

are a number of scenarios where increased partial data is highly beneficial. I should caution

here that there is likely a simplification of the clustering problem that occurs with partial that

is a result of my synthetic data generation process (less clusters in a modality results in

higher separation between the remaining clusters). A more in depth examination comparing

the clustering with partial data to clustering on the set of data with complete measurements

across modalities is needed. In any case, the reasons for partial data can be complex and,

more importantly, the optimal methods for incorporating partial data can change based on the

partial data process. For example, Mean Si outperforms NEMO at high levels of cluster based

partial data as seen in Figure 3.11.
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3.6.1 Limitations

It must be acknowledged that my use of synthetic data introduces limitations. My synthetic

data generation process is constrained by my assumptions and lacks realistic complexity.

These factors may potentially compromise the generalisability of my findings. Similar to Chapter

2, the data distributions used to embed clusters are relatively simple and do not contain com-

plex interactions between clusters. While the addition of high noise distributions like mixture of

Student’s-t introduces outliers and increased difficulty, there is no guarantee this is reflective

of real world challenges.

There is limited variety in how clusters are embedded across modalities. The variation in

cluster structures is highly simplified. While some implications can be gleaned from my merged

and split clusters, these simplifications do not encompass the full spectrum of possibilities

in real-world scenarios. Understanding the sensitivity of integration methods to the specific

combination of modalities used is crucial for practical applicability.

Comparisons with multi-omic data sources reveal further limitations. My synthetic data main-

tains consistent cluster distributions with limited variations in consistency across modalit-

ies. There are no changes in the number of features, and the data remains relatively low-

dimensional compared to real multi-modal data, where modalities may have tens of thousands

to hundreds of thousands of features.

There are additional limitations in my partial data analysis. My choice of imputation is highly

conservative, prioritising the penalisation of individuals with missing data to reflect the in-

creased uncertainty in their features. This approach likely explains sensitivity of Similarity

Network Fusion (SNF) to partial data. A less punishing imputation strategy might enhance

SNF’s performance. Additionally, my exploration of partial data is quite constrained, as each

individual is at most missing from one modality. Real world datasets individuals are missing

from several modalities. I also do not examine the effect of partial data on local structure or

determine when cluster information collapses.

3.6.2 Future Work

In terms of future research, a key direction would involve expanding the modality generation

framework. The consistency of a pair of nodes’ pairwise similarity and similarity to their

wider neighbours within a cluster are essential factors determining the addition of edges

between nodes in the network. With this in mind exploring diverse configurations for cluster

information across modalities is crucial. For instance, introducing targeted random noise or

increasing pairwise swaps of features could be a method to test new types of consistency.
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Another avenue could involve adding fully random modalities without embedded clusters,

diverging from the current approach of introducing random clusters. The primary goal is to

systematically delve into pairwise similarity consistency in a targeted manner, enhancing my

understanding of when specific methods prove more effective.

An additional enhancement to my analysis would be a concerted effort to better mirror real-

world multi-omic and multi-modal data. Introducing variations in the number of features, cluster

size, and cluster distribution would increase the realism of my synthetic data, making it more

representative of the intricacies found in real-world datasets. When combined with my recom-

mendations regarding data distributions, as outlined in Chapter 2, these adjustments could

significantly enhance the generalisability of my framework.

Another avenue of investigation is the assessment of partial data using less conservative

imputation strategies. As outlined in Section 1.4, numerous sophisticated methods exist for

imputing item non-response. If we consider our similarity measurements for each modality as

a set of features, we can leverage more complex imputation strategies, potentially leading to

improved performance. This is particularly relevant for methods like Similarity Network Fusion

(SNF), which exhibited high sensitivity to partial data, making them potential beneficiaries of

such strategies.

Moreover, a deeper investigation into the effects of partially complete modalities would be

highly beneficial. Through the application of more complex partial modality strategies, I can

better mirror the types of incompleteness observed in real-world data. My strategy for intro-

ducing partial modalities factors that relate to the underlying clusters is relatively simple — a

realistic factor to likely to be more complex. Furthermore, in real world datasets, individuals

may be absent from several modalities. Is there a threshold where the level of absent modality

data renders an individual more of a hindrance than a benefit? To what extent do partial

individuals corrupt their neighbours? Do some methods handle increased partial data more

effectively than others?

Lastly, a valuable future direction involves comparing network clustering approaches to other

multi-modal clustering methods, such as dimensionality reduction and matrix factorisation

methods. Beyond just a comparison of clustering accuracy, exploring whether networks cre-

ated from the embeddings produced by these alternative methods are more informative and

reflective of community structures would provide valuable insights.



Chapter 4

Biomedical Applications

4.1 Introduction

Understanding the true capabilities of algorithms requires testing beyond the confines of

synthetic data. While synthetic datasets provide a useful starting point for exploring similarity

network construction in controlled environments, they often fall short of replicating the intric-

ate complexity and diverse properties of real-world data, particularly in the biomedical field.

Biomedical datasets can range from extremely high-dimensional multi-omic data, including

measurements from genes, proteins, and methylation sites, to lower-dimensional medical

questionnaires characterised by interlinked questions, frequent missing observations, and

qualitative ordinal features Arslanturk et al. (2016). Despite my efforts to design synthetic

data that approximates these characteristics, it inevitably lacks the nuanced variability and

challenges that real-world biomedical data presents.

In previous chapters, I evaluated how the construction of similarity networks affects community

detection in both single-modality and multi-modal settings, using synthetic data designed to

mimic the properties of biomedical datasets. However, real-world biomedical data presents

additional challenges, including imbalanced datasets with a low number of observations re-

lative to the high number of features1 Feldner-Busztin et al. (2023); S. Wang et al. (2021).

This observation-feature imbalance is further complicated by issues such as partial data,

which arise due to resource constraints, the diversity of measurement tools, and the rarity

of conditions or willing participants Hall et al. (2019); Piantadosi (2005); Santiago-Rodriguez

and Hollister (2021). These challenges starkly contrast with the extensive labelled training

data available in more common machine learning settings, such as image classification He,

Zhang, Ren, and Sun (2016).

In this chapter, I build upon the findings from synthetic data evaluations by testing on real-

world biomedical datasets. Specifically, I verify these findings on two data sources with known

ground truth that encapsulate key properties of biomedical data: high-dimensional feature

sets, partial modalities, and unbalanced class memberships. The datasets include three can-

cer types from The Cancer Genome Atlas (TCGA) Tomczak et al. (2015) —– breast invasive

1. With the arrival of large scale resources such as the UK Biobank, this is improving.
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carcinoma (BRCA), lower grade gliomas (LGG), and the pan-kidney cohort (KIPAN) —– as

well as phenotypic measurements from the Simons Simplex Collection (SSC) Fischbach and

Lord (2010), which includes a cohort of probands with confirmed autism spectrum disorder

(ASD) diagnoses and their unaffected siblings.

Previous chapters identified several key findings: Similarity Network Fusion does not provide

a significant advantage over simpler integration methods; Spectral clustering underperforms

compared to the modularity maximisation of Leiden clustering and the generative approach

of Stochastic Block Modelling (SBM); and NEMO demonstrates much more effective incor-

poration of partial data compared to other integration methods. This chapter aims to assess

whether these findings hold true when applied to the more complex challenges posed by

real-world datasets. The TCGA and SSC datasets introduce increased rates of partial data,

significantly higher dimensionality, and a greater number of modalities, making them more

challenging than the synthetic datasets previously examined.

Building on the approaches outlined in Chapter 3, I evaluate the quality of networks produced

by a set of multi-modal integration techniques by measuring the clustering performance of

various algorithms. These integration methods are tested on both complete and partial ver-

sions of the TCGA and SSC datasets. Additionally, to further investigate the quality of the

constructed networks, I assess the predictability of the discovered clusters and illustrate the

factors that influence cluster membership.

4.2 Related Work

4.2.1 Cancer Subtypes

The Cancer Genome Atlas (TCGA) Programme is a collection of 33 different types of tumour

samples from over 11,000 individuals with genomic sequence, expression, methylation and

copy number variation data publicly available to analyse Tomczak et al. (2015). This collection

of open data has facilitated the identification of multiple cancer subtypes and improved the

understanding, care and treatment of a plethora of different cancers Grossman et al. (2016);

Verhaak et al. (2010). Data analysis of TCGA data has varied from supervised detection of

important features Malta et al. (2018) to unsupervised clustering with a focus on identifying

tumour subtypes Brannon et al. (2010).

The aim of cancer subtyping is the identification of tumours with different molecular underpin-

nings so as to better understand tumour biology and improve treatment strategies. Subtypes

are often characterised by different rates of survival Brannon et al. (2010); Verhaak et al.

(2010); B. Wang et al. (2014). By gaining an understanding of the underlying cause of a
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particular cancer subtype, better treatment options or molecular targets can be identified for

that particular group Olopade, Grushko, Nanda, and Huo (2008). Furthermore, by reducing

the heterogeneity within each subtype, altered features which were previously unidentifiable

can be uncovered Saria and Goldenberg (2015).

Multi-View Learning

While TCGA has been extensively used to develop techniques for multi-omic data analysis, it

has also emerged as a common test setting in the wider field of multi-view learning Rappoport

and Shamir (2018); Serra et al. (2015). Multi-view learning is focused on the integration of

multi-modal data in data analysis approaches. TCGA is a large, well maintained, publicly

accessible cohort. Furthermore, the challenges posed by TCGA data are reflective of the

wider challenges faced by multi-modal data. It is comprised of modalities that differ signific-

antly in size, quality, and completeness. Only a subset of samples within each TCGA dataset

have a full set of measurements in each modality, leading to difficulties with data wastage or

complexities in analysis.

TCGA has been notably used to assess similarity network integration methods. Two state

of the art approaches to multi-modal similarity network construction; Similarity Network Fu-

sion (SNF) B. Wang et al. (2014) and NEighborhood-based Multi-Omics clustering (NEMO)

Rappoport and Shamir (2019), were both evaluated using subsets of TCGA data. However,

a challenge arises when evaluating community detection and clustering methods in TCGA

due to the scarcity of known subtypes. In both the SNF and NEMO papers, the lack of a

comprehensive set of ground truth tumour subtypes required alternative assessment based on

differences in survival rates and the number of differentially expressed clinical features found

within identified clusters. These measures, survival rates and number of significant features,

were also the a primary metric used in a review of multi-omic approaches Rappoport and

Shamir (2018). While evaluating the effectiveness and plausibility of clusters identified by a

single method is feasible through these assessments, the benefit of comparing these methods

to others using the same approach is less obvious. As demonstrated in Chapter 3, NEMO

and SNF perform similarly, with SNF excelling with well-structured and less noisy data, while

NEMO is more suitable for partial data with unknowns (the context for which it was initially

developed). However, this level of detail is cannot be uncovered within the current benchmark

approach that relies on comparing group survival trends and the count of enriched clinical

features.
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Another alternative has emerged in the multi-view community, involving the comparison of

clustering performance on pan-cancer cohorts, where various TCGA sets are combined for

assessment. These methods face equivalent issues due to the unrealistic nature of the pre-

diction tasks they pose. Tumours from different origins vary significantly in their molecular and

genomic characteristics. Moreover, the presence of batch effects, which are often overlooked,

makes pan-cancer clustering problems far simpler and are not truly representative of the

complex multi-omic subtyping challenges that these clustering methods aim to address.

Subtypes within the TCGA

Some molecular subtypes have been identified since the inception of TCGA. The Pam50

breast cancer classification Mathews et al. (2019) is a stratification of Breast invasive car-

cinoma that uses the gene expression of collection of 50 genes to separate tumours into 5

distinct subclassifications; HER2, Basal-like, LumA, LumB and Normal-like. These classifica-

tions are an extension of differentiation based on overexpression of the growth factor receptor

HER2. All the Pam50 subgroups have been shown to have significantly different survival

profiles; HER2 and Basal-like (also known as triple-negative) classifications typically show

poorer prognosis compared to the other classifications. Furthermore, treatments particular to

individual Pam50 sub-classifications have been developed and are currently in use clinically,

highlighting the benefit of tumour subtyping Nielsen et al. (2010).

Another TCGA dataset where molecular subtypes have been identified is within Lower Grade

Gliomas (LGG) Deng et al. (2023). The three subclassifications of LGGs are characterised by

mutations in the isocitrate dehydrogenase (IDH) gene and co-deletion of chromosome arms

1p/19q (1p/19q co-deletion). The IDH-wildtype is associated with poorer prognosis. The IDH

Mutant tumours are split into tumours with 1p/19q co-deletion and tumours without codeletion.

Both subtypes are associated with better prognosis.

Furthermore, TCGA has gathered several Renal Carcinoma cohorts, including Clear Cell

Renal Cell Carcinoma (KIRC), Papillary Renal Cell Carcinoma (KIRP), and Chromophobe

Renal Cell Carcinoma (KICH). These subtypes are identifiable by their unique histological

appearances. Yet, beyond their visual differences, their molecular underpinning is also notably

diverse. As a test set for assessing clustering methods, these renal carcinoma subtypes offer

a simpler evaluation scenario compared to the complexity of the PAM50 and LGG subtypes. In

contrast to the pan cancer benchmark used in multi-view learning, these tumours all originate

from the same anatomical area, the Kidney.
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4.2.2 Autism Spectrum Disorder

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that is estimated to affect

about 1% of people worldwide. Presentation of ASD in patients is extremely heterogeneous,

with symptoms including alterations in social functions, restricted interests, abnormal repet-

itive behaviours, and problems with verbal communication. There is also great variation in

the severity and developmental trajectory of individuals with ASD Lai, Lombardo, and Baron-

Cohen (2014). As a result, determining the best strategy to support and treat patients is a

complex and poorly understood process Lord, Elsabbagh, Baird, and Veenstra-Vanderweele

(2018). While research has largely focused on identifying and understanding the genetic

components of ASD Lord et al. (2022), significant questions remain over the existence of

robust and distinct patient subtypes within ASD cohorts Agelink van Rentergem, Deserno,

and Geurts (2021).

The diagnoses of ASD poses significant challenges. A clinical diagnosis typically involves

extended observation by a trained clinician, interviews with the individual and their parents,

and relies on attentive parents, teachers, or family physicians for referrals Falkmer, Anderson,

Falkmer, and Horlin (2013); Lord et al. (2022). This process is not only time-consuming but

also financially demanding. The intricate nature of ASD amplifies the challenges in providing

effective treatments and support to individuals affected by it. Additionally, the heterogeneous

nature of ASD makes understanding developmental trajectories difficult. For young children,

predicting the manifestation of ASD and determining the most suitable treatments for a fulfilling

life can be challenging.

Identifying distinct subtypes within Autism offers promising advantages for both patients and

clinicians. The identification of distinct Autism subtypes has the potential to assist patients

and clinicians alike. Improved homogeneity within specific subtypes could enable clinicians

to provide patients with more accurate prognoses, offering patients a clearer understanding

of how Autism may influence their lives. Moreover, it opens avenues for tailored support

strategies for different subgroups. Subtyping holds the potential to improve our understanding

of the genetic component of ASD. By minimising contradictory effects between groups and

reducing variance within specific subgroups, it can enhance the statistical power of genome-

wide association studies (GWAS). Presently, the vast heterogeneity within Autism presents a

significant obstacle in improving prognostic accuracy and delivering tailored support.
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ASD Subtypes

A number of previous work has attempted to identify subtypes of ASD however, they have

been hampered by small cohort sized (c.500 individuals), or the use of only one single

diagnostic survey, such as the Repetitive Behaviour Scale-Revised, as a basis for stratification

Agelink van Rentergem et al. (2021). The development of larger and more comprehensive

datasets such as the Simons Simplex Collection (SSC) Fischbach and Lord (2010) has en-

abled subtyping of larger cohorts. However, analyses of the SSC (as well as analyses of other

smaller cohorts) have focused on stratification through a small subset of summary scores

Matta, Zhao, Ercal, and Obafemi-Ajayi (2018). The SSC has a rich set of phenotypes avail-

able providing a very comprehensive description of each individual’s particular presentation

of Autism. While summary scores provide very accurate diagnostic information, their utility

as a basis for stratification has not been definitive. Often stratification has been performed

using Latent Class Analysis (LCA) which provides a highly interpretable model but has poor

scalability and is less suited to analysis with a large number of variables Greaves-Lord et al.

(2013); Wiggins et al. (2017).

The standard diagnostic questionnaires used in ASD assessments are typically condensed

and standardised across the population before being employed in subtyping analyses. It’s

plausible that delving into lower-level phenotypic features could unravel the heterogeneity

within ASD. These features are currently captured by the questionnaires but have not yet

been incorporated into a comprehensive multi-modal analysis. The construction of similarity

networks and subsequent clustering offer the potential to unlock the multidimensional hetero-

geneity observed in ASD. As discussed in Section 4.2.1, similar network approaches have

proven successful in delineating tumour subtypes within multi-modal settings characterised

by tens of thousands of features.

SFARI Collections

The Simons Foundation Autism Research Initiative (SFARI) has organised a number of stud-

ies with the aim collating several Autism cohorts; Simons Simplex Collection (SSC) Fischbach

and Lord (2010), Autism Inpatient Collection (AIC) Siegel et al. (2015), Simons Searchlight

Simons VIP Consortium (2012) and Simons Foundation Powering Autism Research for Know-

ledge (SPARK) Feliciano et al. (2018). Each cohort was created with different aims, each

falling under the general scope of research into the genetics of Autism. The AIC is a collection

of phenotypic and genetic data of c.1500 individuals that can be characterised including a

large cohort of individuals with profound autism; which can be characterised as minimally

verbal, display very low adaptive functioning and/or engage in challenging behaviours. The

Simons Searchlight is a collection of c.1500 individuals with rare genetic disorders and Autism

diagnoses. SPARK is an online collection of c300,000 individuals (c100,000 with an Autism
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diagnosis) containing phenotypic information collected through online surveys and genetic

information. It is the broadest and most comprehensive sample of individuals with Autism yet

its’ phenotypic information is far more limited than the other SFARI cohorts.

Simons Simplex Collection

The Simons Simplex Collection (SSC) is a set of data from 2868 families collected with the aim

of identifying de novo mutations that contribute to the risk of ASD Fischbach and Lord (2010).

As indicated in the name, each family in the study is a "simplex", the only member of family

with a diagnosis is the proband. At least one unaffected sibling and unaffected parents were

required for inclusion in the study. If any parents or family members were found or suspected to

have an ASD diagnosis, they were excluded from the study. Other exclusion criteria included

a nonverbal mental age below 18 months, medically significant perinatal incidents and not

meeting the criteria for an ASD diagnosis. The families were recruited from several clinical

sites in the US and the probands can be characterised as individuals with relatively "severe"

Autism.

A comprehensive set of diagnostic measurements were collected assessing a probands phen-

otypic presentation of ASD. Examples of the types of phenotypes assessed include social

communication (Social Communication Questionnaire — SCQ Eaves, Wingert, Ho, and Mick-

elson (2006) and Social Responsiveness Scale — SRS Constantino and Gruber (2012)), cog-

nitive ability (Differential Ability Scales — DAS-II Elliott, Salerno, Dumont, and Willis (2007)),

problem Behaviour at home and in school (Child Behaviour Checklist — CBCL Achenbach

and Verhulst (2010)), developmental coordination (Developmental Coordination Question-

naire — DCDQ Wilson et al. (2009)) and adaptive behaviour (Vineland Adaptive Behaviour

Scales — Vineland II Sparrow and Cicchetti (1989)). A full list of the SSC measures is

provided in Appendix C.1). For each individual, a formal diagnosis was performed using

Autism Diagnostic Interview, Revised (ADI-R) Rutter, Le Couteur, and Lord (2003) and the

Autism Diagnostic Observation Schedule (ADOS) Gotham et al. (2007).

The SSC provides a clear example of some issues that typically arise with data collected

through biomedical studies. It is a large cohort of with rich phenotypic data available. However,

it has a notable issue with partial data; the measurements taken for each individual are not

identical. A number of measurements require the use of different modules based on age or

language ability; ADOS, DAS-II, Ravens (Raven’s Progression Matrices Raven (2003)), CBCL

or TRF (Teacher Report Form Achenbach and Verhulst (2010)). As a development disorder,

ASD can be identified at any age although typically presents itself in preschool or early school
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years. However differences in development and language ability require significantly different

measures and assessment. CBCL, DAS-II and TRF all have different modules based on

whether a child is of an age to attend school or not.

Identifying a shared cohort is a non-trivial task. Some of this data is central to a clinical dia-

gnosis; ADOS is one of the key criteria for a diagnosis of Autism within this cohort. Restricting

analysis to a particular ADOS module significantly restricts the extent of possible analysis

of the SSC cohort to either a specific age group or specific level of language ability. While

the modules collect equivalent aspects of an individual phenotypic profile, it is non trivial

to combine modules. Each module is standardised and comprised of a varying number of

measures. For example CBCL 6-18 has investigates a child’s behaviour at school but this

is not available within CBCL 2-5. Imputation does not work for these types of issues as the

feature does not make sense in the context of that individual.

It is important to emphasise that there is no expectation that the split of individuals based on

ages is reflective of any potential underlying subtypes. In traditional analysis, the incorpora-

tion of distinct diagnostic modules require a choice to be made between limiting analysis to

individuals of set age groups (toddler/school going) and language ability (non-verbal/phrase

speech/verbally fluent) or discarding established diagnostic tools from the analysis. This pre-

vents the comparison of individuals across age groups without the removal of the diagnostic

tool in question. Partial data multi-modal analysis allows us to incorporate additional modules

without restricting the cohort to be included in our analysis. This approach should improve the

granularity and understanding within a particular cohort by including these distinct modules.

A key question to answer is whether the inclusion of this partial data corrupts the analysis of

the complete cohort?

4.3 Datasets

4.3.1 The Cancer Genome Atlas

There are over 30 different cancer tumour type collections available for analysis in the Cancer

Genome Atlas (TCGA). I focus on 3 subsets; Breast Cancer (BRCA), Lower Grade Glioma

(LGG) and Pan Kidney Cohort (KIPAN) which contain the Clear Cell Renal Cell Carcinoma

(KIRC), Papillary Renal Cell Carcinoma (KIRP), and Chromophobe Renal Cell Carcinoma

(KICH) cohorts (as detailed in Section 4.2.1). For all three cohort a variety of multi-omic meas-
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urements are available; DNA methylation CpG sites, Reverse-phase protein array (RPPA),

mRNA gene expression, mi-RNA gene expression and copy number variants. This provides a

detailed multifaceted description of the molecular underpinnings of each tumour sample.

For each dataset, we have an established ground truth subclassification. I use the PAM 50

subclassfication as subtype targets for TCGA-BRCA, the IDH/Codeletion subclassfications

as targets for TCGA-LGG and the renal subtypes KIRC, KIRP and KICH within the KIPAN

cohort. As detailed in Table 4.1, the cohorts vary in size with the LGG the smallest at 455,

and BRCA the largest with 1083. There are also varying numbers of ground truth classes; 5,

3 and 3 respectively. The classification problems are imbalanced; in particular, the LumA and

LumB classifications comprise the majority of the BRCA population and KIRC comprises the

majority of the KIPAN cohort. Care is required when selecting our metrics to ensure that class

imbalances are accounted for in this analysis.

To preprocess the TCGA datasets, I follow the procedures outlined in Ryan, Marioni, and

Simpson (2023). I perform outlier removal, missing-data imputation and normalisation. Any

features with more than 50% missing values were removed. Mean value imputation was used

for remaining missing values. For normalisation, I remove the mean and scale to unit variance

for each feature2. Unlike Ryan et al. (2023), I do not perform feature selection. They make use

of LASSO regression and differential expression analysis with the ground truth subtypes as

targets. My aim in this work is to evaluate unsupervised clustering and the use of ground truth

labels in feature selection may artificially inflate the clustering performance.

As can be seen from Table 4.2, the modalities vary not just in terms of the information captured

but in terms of dimensionality3. The DNA methylation contains a significant number of CpG

sites leading to very high dimensionality 300,000 yet has only 780 observations in the largest

dataset (BRCA). In contrast the RPPA, while still of high dimension, is orders of magnitude

smaller with only 460 features.

There is a significant data completeness issue present in these three TCGA cohorts. From

Table 4.2, we can see that the number of observations in each modality varies. LGG is the

most consistent, 325 out of 455 (70%) of individuals have a full set of measurements. By

contrast, the number of complete measurements is much lower in the larger cohorts; 49%

and 55% respectively. If we count the number of times an individual is absent from a modality

then only 6.30% of possible measurements are missing within LGG. BRCA and KIPAN have

2. The empirical mean and variance are calculated using the values observed in each feature. This will differ for
the partial and complete data.
3. These are the number of features after preprocessing.
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much higher rates with 14.7% and 12% of possible measurements absent in each respective

cohort. Figure 4.1 highlights that the rate of missing data is not consistent across ground truth

subtypes. The least frequent subtypes within each dataset, Normal-like, IDH WT and KICH,

all have significantly higher rates of partial modalities than the larger subgroups.

(a) BRCA

Sub-Group P C

LumA 562 301
LumB 209 107
Basal 190 86
Her2 82 37
Normal 40 —

Total 1083 531

(b) LGG

Sub-Group P C

IDH Mut Non-Codel 218 152
IDH Mut Codel 151 121
IDH WT 86 52

Total 455 325

(c) KIPAN

Sub-Group P C

KIRC 533 261
KIRP 290 202
KICH 66 26

Total 889 489

Table 4.1: Subtype Distribution in TCGA Cohorts: BRCA, LGG, and KIPAN. Breakdown
of the subtypes (ground truth cluster labels) within the (a) BRCA, (b) LGG and (c) KIPAN
TCGA cohorts. I further divide the cohorts into two sets of data: i) Complete (C) — entities
with complete observations across all modalities and ii) Partial (P) — all available entities
including those with missing measurements in one or more modalities.

Dataset DNAm mRNA miRNA CNV RPPA

D Ni D Ni D Ni D Ni D Ni

BRCA 293,649 780 27,605 1,007 1,598 978 60,265 1,014 464 840
LGG 321,999 457 22,185 437 1,515 408 60,274 450 457 389

KIPAN 310,045 658 28,212 846 1,552 793 60,274 864 469 752

Table 4.2: Data Characteristics of TCGA Modalities: Feature Count and Observations.
The number of features D and observations Ni for each dataset across the five data modalities
within TCGA. Modalities vary significantly both in dimensionality and completeness.
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Figure 4.1: Partial Measurement Rates per Subtype in TCGA Datasets. Frequency of
partial measurements per subtype within the TCGA datasets. We can see that within BRCA
the Normal subtype has a significantly higher rate of individuals with incomplete modality
measurements.

4.3.2 Simons Simplex Collection

The Simons Simplex Collection (SSC) is a set of data from 2868 families each containing

an individual formally diagnosed with Autism between 4-18 years old. The SSC cohort is

comprised of 2869 probands. After the loss of individuals due to data privacy and censoring,

2365 of the 2868 families (82%) have an unaffected sibling. Fortunately due to the longitudinal

nature of the study, some of the measured Simplex’s contain more than one sibling creating

a cohort of 381 additional unaffected siblings. As shown in Table 4.3, this leaves a total

population of 5615 individuals with 2869 probands with ASD and 2926 unaffected siblings.

While there is not a set of ground truth subtypes within the SSC, the cohort of unaffected

siblings provides a control group to use as a ground truth target. We can be highly confident

in the accuracy of the control group. A formal diagnosis for the proband was required for

inclusion within the SSC and the group of siblings were required to have been classified as

unaffected. In a network analysis, we expect this cohort to cluster separately to the ASD

cohort.

It must be noted however, that not all diagnostic questionnaires were completed by the un-

affected siblings limiting the phenotypic information available for analysis. After limiting our

analysis to measures shared between the probands and siblings, for each individual, we

have measurements of adaptive behaviour (Vineland II), autistic traits (SRS Parent and SRS

Teacher), social communication (SCQ Parent and Teacher), problem behaviour at home (ABCL

18-59, CBCL 2-5 and CBCL 6-18) and problem behaviour at school (TRF 6-18 and CTRF 2-

5). This create a set of 11 distinct modalities. Similarly to the TCGA data, I perform outlier
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Sub-Group Partial Complete

Proband 2869 788
Unaffected Sibling 2365 574
Other Sibling 381 73

Total 5615 1435

Table 4.3: Subtype Distribution in SSC. Breakdown by sub-group of the partial and
complete data splits within the SSC. The complete set of data is formed by limiting the cohort
to children aged 6-18 that are present within the CBCL 6-18, TRF 6-18, SRS Parent & SRS
Teacher, SCQ Parent & SCQ Teacher and Vineland-II modalities.

removal, missing-data imputation and normalisation. Any features with more than 80% miss-

ing values were removed. Mean value imputation was used for remaining missing values. For

normalisation, I remove the mean and scale to unit variance for each feature. A breakdown of

the modalities by number of observations and number of features4 is shown in Table 4.4.

There is a far higher data completeness issue within the SSC compared to TCGA. As dis-

cussed in Section 4.2.2, certain diagnostic questionnaires are split into modules based on

age or language ability. As a result individuals within CBCL 2-5 will not have measurements

within CBCL 6-18. To create a complete data cohort, I limit my analysis to individuals with

complete measurements within the CBCL 6-18, TRF 6-18, SRS Parent & SRS Teacher, SCQ

Parent & SCQ Teacher and Vineland-II modalities. This leaves us with 1435 individuals, 25.5%

of the 5615 individuals in the partial data cohort. A breakdown by individual subgroup is

shown in Table 4.3. The percentage of the cohort that is complete is far lower than within the

TCGA datasets. Moreover, within the partial data cohort, 53.96% of possible measures are

absent (supposing that CBCL 6-18 and CBCL 2-5 could both be completed by an individual).

This is twice the rate of partial data found within BRCA (14.7%) and far more challenging to

incorporate.

Another difference between the TCGA and SSC data is the presence of ordinal variables with

a limited set of possible values. The instruments used in the SSC data are diagnostic ques-

tionnaire comprised of ordinal features that might assess the characteristics of an individual

with questions such as level of speech where the possible answers are very weak, weak,

moderate, strong, very strong. Unlike numeric features such as RNA Gene expression data,

the feature space is restricted and may require very different approaches to the calculation of

4. These are the number of features after preprocessing.
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Modality Ni D

CBCL 2-5 1177 30
CBCL 6-18 4259 42
ABCL 18-59 119 50

SCQ Parent 3906 41
SCQ Teacher 2351 42

SRS Parent 5456 72
SRS Teacher 2875 72
SRS Adult 105 71

TRF 2-5 590 42
CTRF 6-18 2080 50

Vineland II 5521 47

Table 4.4: Data Characteristics of SSC Modalities: Feature Count and Observations
Number of individuals Ni and number of features D within each modality of the SSC Proband
and Sibling cohort. The number of observations within a particular modality varies from 5521
(Vineland II) to SRS Adult (105). Partial modalities are a significant challenge within SSC.

similarity. The dimensionality is much lower with 15-50 features typically in each measurement

tool but there are far more modalities that have to be integrated together. Additionally there

are far more observations with 5615 individuals in the SSC compared to 1083 in TGCA BRCA.
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4.4 Experiment Setup

I want to evaluate the performance of community detection on similarity networks created

using multi-modal integration methods on biomedical data. To evaluate the community de-

tection performance, I need ground truth controls. In the TCGA, I have known subtypes for

each dataset; PAM50 subclassification, IDH-Codel subtypes and Clear Cell, Papillary and

Chromophobe subtypes. In the SSC, I use two subtypes as ground truth targets; Probands

with a confirmed ASD diagnosis and unaffected siblings. The datasets are processed using

the preprocessing steps outlined in Section 4.3.

The analysis pipeline for each of the multi-modal integration methods is as follows; i) calculate

pairwise similarity on each modality M, ii) combine the pairwise similarity matrices using

the multi-modal integration methods, iii) construct a K-Nearest Neighbour network from the

integrated similarity score, and iv) perform community detection. I use the Pearson correla-

tion metric to calculate pairwise similarity on each modality. The Pearson correlation metric

between two individuals U and V is given by

dcorr(U,V ) = 1− (U−Ū) · (V −V̄ )

||U−Ū || ||V −V̄ ||
.

I normalise the pairwise similarity distributions on each modality to have zero mean and unit

variance when calculating Mean Si.

To assess the quality of the integrated networks, I employ two main approaches. Firstly, I

evaluate the quality of labellings produced by several cluster algorithms using various metrics

for clustering performance. Secondly, I gauge the ’predictability’ of the clusters through a

supervised prediction model. This model is built using a combined set of features derived

from the separate modalities.

Within the supervised model, I address two aspects of the network. First, I assess the quality

of the cluster labellings produced on the network by training a model to predict these labels.

Second, I evaluate the network structure’s quality by training a model to predict the ground

truth labels using partial modalities and leveraging the network structure to impute missing

values within each modality. For nodes absent from a modality, I impute the mean values of

its nearest neighbours in the network.
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Networks

For each integration method, I construct a KNN network from their integrated pairwise sim-

ilarity. I use the same K for all integration methods. I opt for a heuristic approach to select

the value of K. I select K for each dataset, both partial and complete, by taking K = 80% ·
√

N where N is the number of individuals in the dataset. This heuristic was chosen as it

generally led to a density that corresponded to the most consistent performing networks

across algorithms as shown in Chapter 2.

I evaluate the following multi-modal integration methods

• Similarity Network Fusion (SNF) — de facto standard approach for multi-omic in-

tegration and unsupervised clustering analysis. Similarity calculated through diffusion

across KNN graphs. I consider two approaches to imputation in partial modalities. For

each pairwise modality distance S(K), the pairwise value between a node i with NaN

in Xk and any other node j is set to

– SNF Mean Mod — Mean similarity of all complete nodes in modality K

– SNF Mean Pair — Mean pairwise similarity between node i and node j in other

modalities i.e. ∑m ̸=K S(m)
i j . If nodes i and j are never present in the same modality

i.e. pairwise similarity in all other modalities are NaN, then set their pairwise

similarity to max distance/dissimilarity for that modality.

SNF is then computed as normal with imputed values included.

• NEighborhood Based Multi-Omic Clustering (NEMO) — Mean relative similarity

between nodes i and j based on a K-nearest Neighbourhood in each modality. NEMO

was developed to analyse partial data. The mean relative similarity for any pair of

nodes i and j is computed over the modalities where both nodes have recorded data.

• Mean Si imputing max — For each pairwise modality distance S(K), the pairwise value

between a node i with NaN in Xk and any node j is set to max distance/dissimilarity

for that modality. Mean similarity is then computed between by averaging the pairwise

similarity of nodes i and j across all modalities.

• Mean Si ignoring NaN — The mean similarity for any pair of nodes i and j is computed

over the modalities where both nodes have recorded data. If nodes i and j are never

present in the same modality i.e. pairwise similarity in all other modalities are NaN,

then set their pairwise similarity to max distance/dissimilarity.
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• Extreme Mean — for each modality, pairwise similarity between nodes with recorded

values in the modality is thresholded to only include very similar and very dissimilar

connections. S(K)
i j = 0 if |S(K)

i j | < θ where θ is set to one standard deviation of the

normalised pairwise similarity distribution in a modality. The mean similarity for any

pair of nodes i and j is computed over the modalities where both nodes have recorded

data. If all values between i and j are NaN after thresholding (including NaN when i

has no recorded data in a modality) then the dissimilarity is set to max.

I also evaluate the performance of clustering on single modality networks. I calculate pairwise

similarity on each modality and construct a KNN network from its individual pairwise similarity

matrix. To allow fair comparison between the multi and single modality approaches, I compare

their performance on the complete datasets.

4.4.1 Clustering Algorithms and Metrics

As in Chapter 3, I perform community detection on the multi-modal graph networks using three

distinct network clustering algorithms

• SBM — Python graph-tool5 Peixoto (2014) implementation of the Micro-canonical

Stochastic Block Model Peixoto (2018). The number of clusters K is selected by min-

imising the description length.

• Leiden — Modularity maximisation using Leiden algorithm Traag et al. (2019). I use

the Python igraph6 implementationCsardi and Nepusz (2006). The number of clusters

K is selected through the resolution parameter. A set of twenty potential resolution hy-

perparameters are generated using event sampling Jeub et al. (2018). The parameter

with maximum modularity is selected.

• Spectral — Spectral decomposition and K-means clustering of "Random Walk" nor-

malised Laplacian Lrw = I −D−1A. The number of clusters K is chosen using the

eigengap heuristic. I make use of the Python spectralclusterer7 implementation

Q. Wang et al. (2018).

These algorithms detect the number of clusters automatically and take distinct approaches to

network community detection.

To evaluate the performance of clusters produced by the clustering algorithms, I employ three

metrics:

5. v2.45
6. v0.10.3
7. v0.2.16
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• Adjusted Mutual Information (AMI) — an information theory measure derived from

joint and individual entropies of cluster labellings, given by the formula

AMI = MI−E(MI)
fmean(H(y),H(ŷ))−E(MI) . The mutual information (MI) measures the agreement

between two labellings y and ŷ. The AMI contains a correction for chance Vinh et al.

(2009) and, while similar to the adjusted rand index (ARI), penalises differences in the

number of clusters less than ARI. (For an in-depth discussion, refer to Section 1.5.2)

• Homogeneity (H) — h(y, ŷ) = 1− H(y|ŷ)
H(y) is 1 if all ŷ clusters contain only data points

which are members of a single y class. If two cluster labellings predict a higher number

of classes than the true labelling, the cluster labelling that splits true clusters into

subclusters has high homogeneity.

• Number of predicted clusters — the number of clusters proposed within a cluster

labelling. All methods considered here select the number of clusters automatically.

Unlike the datasets discussed in Chapters 2 & 3 where known ground truth clusters have

been embedded into the data, the datasets here are not synthetic. The presence of ground

truth clusters within each modality are not guaranteed. Furthermore, additional subtypes may

be present within the data that have not yet been identified. In this context, homogeneity

can serve as an indicator that an algorithm detecting more clusters than expected might

have identified previously unknown subtypes, rather than merely failing to accurately detect

the established ground truth clusters. AMI will be our primary measure of performance but

Homogeneity and Number of predicted clusters allow us a more nuanced understanding of

cases where algorithms perform poorly.

4.4.2 Prediction

As choice of predictive model, I make use of a Random Forest model. This model strikes a

balance between predictive power and interpretability. I employed the scikit-learn8 Pedre-

gosa et al. (2011) Python library to train random forest models. Given the high dimensionality

of a number of modalities within TCGA (DNAm modalities have >290,000 features), I use Prin-

cipal Component Analysis (PCA) to merge separate modalities into a unified set of features,

reducing each modality to 64 dimensions. Equal dimensions were selected across modalities

to facilitate the analysis of feature importance. By maintaining equal dimensionality, we can

better assess the origin of the most important features, providing insight into each modality’s

contribution to cluster label prediction. Each modality is transformed into 64 dimensions.

This transformation was applied to both complete and partial datasets within each TCGA

dataset. For the partial data, the PCA transformation was fitted on the set of individuals with

observations. Imputation of missing values was performed on the original features, followed

by transformation into the PCA space.

8. v1.3.2
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To evaluate predictability, I conducted 5-fold cross-validation splits for each dataset. Each

random forest model comprised 500 estimators with a maximum depth of 4. Gini impurity

importance enables us to evaluate the contribution of individual variables to model predictions,

offering insight into which features play the most significant role in determining cluster labels.

Unfortunately, due to the PCA transformation, the training features are linear combinations

of the original features, limiting their biological interpretability. However, each modality con-

tributes an equal number of features within the training data. We can gauge the impact of

each modality on the predictability of a cluster by assessing the rate of a modality’s features

appearing among the top 10% most informative features.

The tasks of predicting subtypes and cluster labels are multi-classification problems. As noted

previously, class imbalances exist within the TCGA data. To address these imbalances and

ensure an accurate overall assessment, I employed the weighted F1-score. This score is

calculated by computing the F1-score for each class and weighting it by its frequency

Weighted F1-score =
∑

C
i=1 F1-scorei×Ni

N
(4.1)

where C is then number of classes, F1-scorei is F1-score for each class i, Ni is the number

of instances of class i and N is the total number of instances in the dataset. This metric is

a trade off that penalises poor performance in less frequent class while also accounting for

the overall performance of the model by increasing the weight of more frequent classes. The

F1-score for each class is calculated using the formula:

F1-score =
2×Precision×Recall

Precision+Recall
(4.2)

where Precision = True Positives
True Positives + False Positives and Recall = True Positives

True Positives + False Negatives .

4.5 Results

4.5.1 TCGA

Clustering Performance

Table 4.5 and Figure 4.2 illustrate the average and maximum AMI clustering performance of

SBM, Leiden, and Spectral clustering within multi-modal integration networks across complete

and partial datasets in the BRCA, LGG, and KIPAN datasets of TCGA. NEMO consistently

emerges as the top-performing integration method across both complete and partial datasets
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for BRCA and LGG. It notably outperforms all other methods in the complete LGG dataset;

however, there is a marked decline in NEMO’s performance when applied to the KIPAN

dataset.

Conversely, SNF never emerges as the optimal method. The mean clustering performance

for both Mean Modality and Mean Pairwise imputation either matches or falls short in com-

parison to Mean Max or NEMO. Specifically, SNF encounters challenges with consistency

when handling partial data. The BRCA partial performance demonstrates that the choice

of imputation strategy can yield either strong clustering (Mean Modality ) or poor clustering

(Mean Pairwise). Moreover, Mean Max performs exceptionally well in the KIPAN dataset,

while, the Extreme Mean method consistently displays the poorest performance.

Figure 4.2: Mean and Maximum AMI Performance of Integration Methods on TCGA
Datasets. Mean and Maximum Adjusted Mutual Information (AMI) clustering performance of
SBM, Leiden, and Spectral algorithms on multi-modal integration networks constructed from
complete and partial datasets across three TCGA datasets: BRCA, LGG, and KIPAN. SNF
struggles with partial data and fails to outperform NEMO or Mean Max integration methods.
NEMO consistently outperforms all methods on both complete and partial BRCA and LGG
datasets. There is a notable drop in performance on complete KIPAN data where Mean Max
exhibits superior performance over other methods. The optimal SNF imputation strategy is
contingent upon the underlying dataset and selecting an optimal strategy is challenging in
unsupervised clustering scenarios.
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Figure 4.3 depicts the clustering performance metrics—(A) AMI, (B) Homogeneity, and (C)

the number of predicted clusters—associated with the SBM, Leiden, and Spectral clustering

algorithms across the complete and partial BRCA, LGG, and KIPAN datasets. Both SBM

and Leiden consistently discover a higher number of subclusters. SBM tends to predict a

number of clusters significantly greater than both the ground truth number of clusters and

the predictions made by Leiden and Spectral algorithms. Although all algorithms exhibit high

homogeneity, indicating consistency within the clusters identified by SBM and Leiden to the

ground truth, the AMI scores are reduced due to the higher predicted cluster count. The

Spectral algorithm’s predicted number of clusters is more accurate, resulting in a lower AMI

penalty due to chance correction. This discrepancy in the predicted cluster count among the

algorithms influences their respective AMI scores.

While the BRCA problem presents increased challenges with a higher number of ground truth

clusters (five subtypes compared to three in the LGG and KIPAN datasets), the lower AMI

scores of the algorithms on BRCA compared to LGG and KIPAN are not solely attributable

to a more significant chance correction resulting from the increased number of clusters. All

three algorithms exhibit low homogeneity scores on BRCA, indicating a lack of consistency

within the clusters identified by the algorithms. Unlike the performance of SBM on LGG, where

poor AMI scores could be attributed to the splitting of ground truth subtypes into subclusters,

the sub-optimal AMI performance on BRCA is primarily due to inaccuracy rather than cluster

fragmentation.
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Figure 4.3: Comparison of Clustering Algorithms on TCGA Datasets by AMI, Homogen-
eity and Number of Predicted Clusters. The (A) AMI, (B) Homogeneity and (C) Number
of predicted clusters of the SBM, Leiden, and Spectral clustering algorithms on the complete
and partial BRCA, LGG and KIPAN datasets. The reduced AMI of SBM and Leiden is a result
of overfitting. They have high homogeneity, an indication that they split the true clusters in
subclusters which results in a drop in AMI due to chance correction. Spectral predicts fewer
clusters and in two of the datasets actually detects the correct number of clusters. SBM
predicts an order of magnitude more clusters than both Leiden and Spectral. The clusters
have high homogeneity but SBM has a significant reduction in AMI.

Cluster Prediction

Figure 4.4 demonstrates the effect of graph imputation using networks from each of the integ-

ration methods for ground truth subtype prediction in partial datasets. The test set weighted

F1-score of random forest prediction models trained with 5 fold cross validation is shown for

each of the TCGA BRCA, LGG and KIPAN datasets. We compare graph-based imputation

using integration methods against two benchmarks: complete data prediction and imputa-

tion based on mean values. Across all methods, BRCA consistently yields lower F1 scores,

whereas LGG presents the most straightforward prediction task. With the exception of KIPAN,

the prediction performance using partial modalities is higher than the complete dataset.

SNF Mean Mod graph imputation outperforms mean value imputation for all datasets although

the difference is very slight in the LGG data. NEMO imputation is the best performing imputa-

tion method for the BRCA data which aligns with the higher clustering performance of NEMO

on BRCA. The success of SNF Mean Mod imputation is surprising given the relatively poor

clustering performance in KIPAN and LGG. On LGG, there is minimal difference between

graph-based and mean value imputation. This is unsurprising due to the lower rate of partial

within LGG.
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BRCA, despite the highest rate of partial modality data, shows a clear prediction performance

boost using partial data over complete data prediction. While the variance of the models

are higher, graph-based imputation consistently outperforms mean imputation across all net-

works. The improvement in performance over the complete data and mean imputation on the

BRCA dataset is especially surprising given the poor clustering performance of the networks.

Figure 4.4: Comparison of Imputation using Graph Neighbours on Prediction Perform-
ance. Test set Weighted F1-score of random forest prediction models trained with 5 fold cross
validation is shown for each of the TCGA BRCA, LGG and KIPAN datasets. We compare graph
based imputation to mean value imputation on partial data and complete data prediction. The
prediction of partial data outperforms complete data prediction in BRCA and KIPAN. Graph
based imputation outperforms the more naive mean value imputation on KIPAN and BRCA.
Both datasets have higher rates of partial data.

Figure 4.5 displays the weighted F1 scores of the prediction of cluster labels generated by

SBM, Leiden, and Spectral clustering algorithms. These scores are derived using 5-fold cross-

validated random forest models trained on both partial and complete datasets across the three

datasets. The overall prediction performance of all three algorithms remains consistent across

the datasets.
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Spectral clustering produces the simplest cluster prediction problem across the networks.

Despite producing clusters with lower AMI scores than the Spectral clusters, the prediction

of Leiden clusters in the LGG and KIPAN datasets is notably accurate and far closer to the

performance of Spectral clusters than would be expected given their respective differences in

AMI.

The prediction accuracy of the clusters found in the BRCA data is far higher than would be

expected given their low AMI scores. In fact the prediction of Leiden and Spectral clusters

on NEMO, Mean Max and Mean Ignore NaN are on par or outperform the prediction of the

ground truth subtypes.

There is a notable difference in predictability between clusters found on SNF with Pairwise

Mean imputation and Modality Mean imputation methods. In particular, there is a significant

drop in the F1-score of the Leiden algorithm across all three datasets. In contrast to its

clustering performance, Mean Max clusters exhibit high predictability consistently across all

datasets.

Figure 4.6 depicts the relationship between Adjusted Mutual Information (AMI) scores ob-

tained from SBM, Leiden, and Spectral clusters generated by our multi-modal integration

methods, alongside the weighted F1 scores achieved by a model trained to predict these

clusters. This plot highlights a noticeable correlation (0.71) between AMI scores and cluster

predictability, the strength of the correlation varies based on cluster type. Within SBM clusters

in particular, higher AMI is strongly linked to elevated weighted F1 scores and higher predict-

ability.
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Figure 4.5: Predictability of Clusters Detected by SBM, Leiden and Spectral Algorithms
on TCGA Datasets. Weighted F1 scores of the prediction of cluster labels generated by
SBM, Leiden, and Spectral clustering algorithms. These scores are derived using 5-fold cross-
validated random forest models trained on both partial and complete datasets across the three
datasets. The predictability of each clustering algorithm remains consistent across datasets.
Leiden clusters found on SNF Mean Mod networks are harder to predict than SNF Mean Pair
despite the poorer AMI score of SNF Mean Pair compared to SNF Mean Mod.
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Figure 4.6: Comparison of Cluster AMI Performance and Predictability on TCGA
Datasets. Cluster AMI score of SBM, Leiden and Spectral compared to the cross validated
weighted F1-score of models trained to predict cluster label. There is a strong correlation
between cluster predictability and AMI score (0.71).

Feature Importance

Table 4.6 presents the mean and maximum AMI clustering performance achieved by SBM,

Leiden, and Spectral clustering on networks constructed from individual modalities, DNAm,

mRNA, miRNA, CNV and RPPA, within the complete BRCA, LGG, and KIPAN datasets.

Across both BRCA and LGG datasets, no individual modality network matches the clustering

performance attained by the multi-modal integration methods with the notable exception of

the miRNA network on KIPAN. CNV consistently exhibits robust performance across all data-

sets. Furthermore, distinct modalities emerge as informative within different datasets: mRNA,

DNAm, and CNV closely align with the ground truth in LGG; miRNA, CNV, and RPPA show

strong consistency with the ground truth in KIPAN; and CNV stands out as the sole modality

detecting a signal, albeit still a poor AMI score, within the BRCA dataset.

The clustering performance of single modality networks are surprising when considering the

underlying nature of the ground truth subtypes. While the robust performance of mRNA and

CNV in LGG aligns with expectations—given that LGG subtypes rely on codeletion and gene

expression—it’s surprising that the mRNA network in BRCA isn’t more informative. mRNA

is the worst performing network alongside DNAm. The PAM50 classification depends on the

expression of a specific set of 50 genes within mRNA. The under-performance of the single

modality mRNA networks highlights the difficulties associated with noise in gene expression
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data and underscores the need for feature selection to extract meaningful subtypes. Further-

more, the lack of feature selection in this work might also contribute to the underwhelming

performance of DNAm networks across all three datasets.

Cancer Type BRCA LGG KIPAN

Max Mean Max Mean Max Mean

Modality
DNAm 0.271 0.184 0.622 0.552 0.348 0.296
mRNA 0.271 0.217 0.697 0.579 0.321 0.295
miRNA 0.297 0.280 0.230 0.172 0.873 0.635
CNV 0.462 0.378 0.606 0.514 0.621 0.483
RPPA 0.331 0.279 0.409 0.252 0.680 0.536

Table 4.6: Comparison of AMI Performance on Single Modality Networks. Mean and
Maximum AMI clustering performance achieved by SBM, Leiden, and Spectral clustering on
networks constructed from individual modalities, DNAm, mRNA, miRNA, CNV and RPPA,
within the complete BRCA, LGG, and KIPAN datasets. Single modality networks fail to match
the performance of clustering on multi-modal networks shown in Table 4.5.

Figure 4.7 illustrates the distribution of the top 10% (32) most influential features across

modalities in cross-validated random forest models for predicting the ground truth, SBM,

Leiden, and Spectral clusters. We restrict our analysis to the clusters identified by the highest-

performing networks, specifically Mean Max, NEMO, and SNF Mean Mod9. Additionally, we

display the average influence of each modality across all cluster types.

Of the three clustering algorithms, the origin of the features identified by Spectral clustering

aligns closest with that of the ground truth clusters. Leiden and SBM place higher importance

in other modalities to the ground truth and spectral clusters. The is most notable in the

BRCA dataset where DNAm, mRNA and RPPA have increased importance in SBM and

Leiden models. The differences between the ground truth and detected clusters is highest

in KIPAN, the models of all three cluster algorithms identify mRNA and miRNA as having

higher importance than the ground truth clusters which make use of RPPA.

The feature importance in ground truth cluster prediction does not align with the highest

performing modalities for cluster detection in LGG and KIPAN. CNV and RPPA have the

highest importance in LGG yet the clusters identified on DNAm and mRNA networks were

more accurate than both. Similarly in KIPAN, the miRNa network detected the clusters with

high accuracy, its AMI score was on par with multi-modal methods yet it has the joint fewest

9. The ground truth prediction models that are included used graph imputation based on these networks
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features included in the top 10% of ground truth cluster prediction. In BRCA, the poorest

performing networks are those of the DNAm and mRNA modalities. These modalities have

higher importance in all four cluster types.

Figure 4.7: Distribution of Top 10% Most Important Features in Cluster Label Prediction
Across Modalities. Distribution of the top 10% (32) most influential features across modalities
in cross-validated random forest models for predicting the ground truth, SBM, Leiden, and
Spectral clusters. Our analysis is restricted to the prediction of clusters identified by the
highest-performing networks, specifically Mean Max, NEMO, and SNF Mean Mod. The feature
importance in ground truth cluster prediction does not align with the highest performing
modalities for cluster detection in LGG and KIPAN seen in Table 4.6.

Figure 4.8 displays the differences in the distribution of the top 10% (32) most influential

features across modalities between the complete and partial datasets. Feature importance is

extracted from cross-validated random forest models predicting SBM, Leiden, and Spectral

clusters on Mean Max, NEMO, and SNF Mean Mod networks. While the origin of influential

factors is generally consistent across most modalities between the two datasets, several differ-

ences emerge. DNAm has heightened importance in predicting partial data on KIPAN, while

mRNA’s influence diminishes, and RPPA gains importance when predicting partial BRCA

compared to complete data. LGG factors exhibit sustained consistency across nodesets. This

consistency across nodesets is not unexpected due to the lower prevalence of partial data.

The variability within the importance of BRCA factors is notably higher within both nodesets.

By comparison, KIPAN and LGG factors are far more uniform. This increased variability could

be attributed to two potential reasons: noisy levels of feature importance across models in

BRCA; or second, substantial differences between clusters identified within BRCA data. First,

there is relative equality in rate of importance among modalities within BRCA. The difference

in level of importance of the top 5-15% most important features might be minimal and so the

order changes significantly from model to model causes significant changes to the distribution
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of the origin of the features. Secondly, the lower homogeneity and AMI of BRCA clusters

compared to the ground truth clusters, unlike LGG and KIPAN datasets, suggest substantial

inter-cluster differences within BRCA.

Figure 4.8: Distribution of Top 10% Most Important Features in Cluster Label Predic-
tion Across Modalities for Complete and Partial TCGA Datasets. Comparison of the
distribution of the top 10% (32) most influential features across modalities between Partial
and Complete data in cross-validated random forest models for predicting SBM, Leiden, and
Spectral clusters. The included models are restricted to the prediction of clusters identified by
the highest-performing networks, specifically Mean Max, NEMO, and SNF Mean Mod. The
variance of distribution of factors within both nodesets is higher in BRCA. Two possible for
this increase in variance is a lack of agreement between the clustering algorithms or minimal
differences in the importance of modalities resulting in noisy ordering of the features.

Effect of including partial data in analysis

Figure 4.9 compares partial and complete data clustering performance by nodetype through

the mean AMI scores generated by SBM, Leiden, and Spectral clustering algorithms on

multi-modal integration networks across BRCA, LGG, and KIPAN datasets. We show the

overall AMI scores for partial data (y — Partial) and complete data (y — Complete). We also

examine the clustering performance of different nodes in y — Partial. Specifically, the AMI

score between predicted and ground truth labels for nodes exclusive to partial data (y — P

only ) and nodes present in both the partial and complete datasets (y — P & C). Additionally,

the AMI agreement among between the predicted clusters on the complete data and the

predicted clusters on the partial data is shown for nodes present in both partial and complete

datasets (P & C consensus). This allows us to examine whether the inclusion of partial nodes

cause a drop in the clustering accuracy of the complete nodes (y — Complete vs y — P & C).
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In the BRCA clusters, the performance of partial only nodes is better than that of the complete

nodes in both datasets. The consensus is very poor amongst the complete nodes. Highlighting

the algorithms struggle to identify a consistent set of clusters.

The clusters identified on Mean Max networks are the most consistent between the complete

and partial data across the three datasets. The inclusion of partial data does not alter the

network structure in such a way as to split or change the clusters to the same extent found in

other algorithms. In some instances this lack of agreement is due to improved accuracy e.g

SNF Mean mod on KIPAN but often a reduction in consensus coincides with poorer accuracy

e.g. NEMO on LGG and Mean Ignore NaN on BRCA.

Figure 4.9: AMI Clustering Performance for Partial and Complete TCGA Datasets by
Nodetype. Breakdown of partial and complete data clustering performance by nodetype
through the mean AMI scores generated by SBM, Leiden, and Spectral clustering algorithms
on multi-modal integration networks across BRCA, LGG, and KIPAN datasets. We show the
AMI scores for partial data (y — Partial), complete data (y — Complete), a breakdown of y —
Partial based on nodetype, nodes exclusive to partial data (y — P only ) and nodes present in
both partial and complete datasets (y — P & C), and the AMI agreement of complete nodes
between their partial and complete clusters (P & C consensus). Adding nodes with partial
data to the network does not reduce the clustering performance of nodes with a complete set
of measurements.
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Figure 4.10 shows the comparison of ground truth cluster prediction in both complete and

partial data using mean and graph-based imputation. We show the weighted F1 scores for

predicting ground truth clusters across the BRCA, LGG, and KIPAN datasets, categorised

by nodetype. We show the weighted F1 scores for partial data (y — Partial) and complete

data (y — Complete). We also examine the prediction performance of different nodes in y

— Partial. Specifically, the weighted F1-score between predicted and ground truth labels for

nodes exclusive to partial data (y — P only ) and nodes present in both the partial and com-

plete datasets (y — P & C). Additionally, the weighted F1-score agreement among between

the predicted clusters on the complete data and the predicted clusters on the partial data is

shown for nodes present in both partial and complete datasets (P & C consensus). This allows

us to examine whether the inclusion of partial nodes cause a drop in the prediction accuracy

of the complete nodes (y — Complete vs y — P & C).

In the LGG and BRCA datasets, the prediction of the labels of complete data improves with

the inclusion of partial data (y — P & C vs y — Complete). Mean Max imputation in KIPAN also

improves the prediction of complete node classes. The prediction of partial nodes is far worse

than that of complete data. Only within BRCA is the prediction of partial data is higher than the

prediction of complete nodes, for both KIPAN and LGG the performance is far worse. While a

weighted F1-score of 0.93 still indicates strong performance, the performance is significantly

worse than that that of the complete nodes within these datasets.

Partial only data prediction (y — P only ) using Mean imputation often performs on par with

graph based imputation or outperforms graph based imputation. Yet this comes at cost as

Mean imputation reduces the performance of the complete data nodes as seen in BRCA and

KIPAN. In KIPAN, this success of partial only data prediction does not result in a drop in

performance relative to the graph based imputation methods.

SNF Mean Pair has poor partial data prediction in BRCA and KIPAN as a result of difficulties in

predicting partial only nodes. It is the converse of Mean imputation that predicts partial nodes

quite well but at the cost of poor complete node prediction. SNF is very successful in partial

data only prediction. It is consistently the best performing graph based method. This contrasts

with its clustering performance. NEMO for example has significantly higher clustering AMI

score on LGG as seen in Figure 4.9. SNF Mean Mod also struggles with poor predictability

of its clusters see Figure 4.5. The difference in performance is unexpected but highlights the

optimal choice of network for clustering performance may not align with optimal choice of

network in other applications.
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Figure 4.10: Weighted F1 Prediction Performance for Partial and Complete TCGA
Datasets by Nodetype. Breakdown of partial and complete data ground truth prediction
performance by nodetype through the mean weighted F1 scores on multi-modal integration
networks across BRCA, LGG, and KIPAN datasets. We show the weighted F1 scores for
partial data (y — Partial), complete data (y — Complete), a breakdown of y — Partial based
on nodetype, nodes exclusive to partial data (y — P only ) and nodes present in both partial
and complete datasets (y — P & C), and the F1-score agreement of complete nodes between
their partial and complete clusters (P & C consensus). The prediction of nodes with complete
data improves significantly with inclusion of partial data in training of the prediction model on
TCGA BRCA.
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4.5.2 SSC

Table 4.7 show the average and maximum AMI clustering performance of SBM, Leiden, and

Spectral clustering within multi-modal integration networks across the complete and partial

data within the SSC for two different metrics — correlation and euclidean. Similar to the TCGA,

consistently emerges as the top-performing integration method across both metrics in both

the complete and partial datasets. Its mean clustering performance is particularly strong. It

notably outperforms all methods when calculating similarity using the euclidean metric.

SNF continues to struggle with partial data. The performance is inconsistent. When the al-

gorithm successfully incorporates the partial data, it performs very strongly. For example, SNF

Mean Pair using the correlation metric. When a large number of partial modalities are present,

as in TCGA BRCA and the SSC data, the partial data corrupts the network structure leading

to poor clustering performance. This can be seen in SNF Mean Mod using both correlation

and euclidean metrics and SNF Mean Pair using the euclidean metric.

Figure 4.11 visualises the clustering performance of the integration methods using the correla-

tion metric. It shows average and maximum AMI clustering performance of SBM, Leiden, and

Spectral clustering within multi-modal integration networks across the complete and partial

SSC data using correlation metric. The drop in performance of SNF Mean Mod with the

inclusion of partial data is particularly notable. It is outperformed by the consistently poor

performing Extreme Mean method when incorporating partial modalities.

Metric Correlation Euclidean

nodeset Complete Partial Complete Partial
Max Mean Max Mean Max Mean Max Mean

Graph Name
Mean Max 0.860 0.558 0.561 0.444 0.804 0.509 0.534 0.250
Mean Ignore NaN 0.860 0.558 0.765 0.500 0.804 0.523 0.777 0.490
NEMO 0.826 0.629 0.802 0.507 0.853 0.643 0.801 0.521
SNF Mean Mod 0.857 0.572 0.277 0.164 0.811 0.582 0.270 0.161
SNF Mean Pair 0.857 0.611 0.796 0.526 0.811 0.583 0.227 0.098
EXTR 0.718 0.527 0.666 0.423 0.653 0.487 0.605 0.400

Table 4.7: Mean and Maximum AMI Performance of Integration Methods on SSC Data.
Average and maximum AMI clustering performance of SBM, Leiden, and Spectral clustering
within multi-modal integration networks across the complete and partial data within the SSC
using correlation and euclidean metrics. NEMO is the most consistent model and achieving
high performance across both metrics and both partial and complete nodetypes. SNF is
unstable when incorporating partial modalities and often leads to drastic decline in network
structure.



4.5. Results 159

Figure 4.11: Mean and Maximum AMI Performance of Integration Methods on SSC
Data. Average and maximum AMI clustering performance of SBM, Leiden, and Spectral
clustering within multi-modal integration networks across the complete and partial data within
the SSC using correlation metric. NEMO performs consistently well across nodesets show
high maximum and mean clustering performance. The drop in performance of SNF with the
inclusion of partial data is inconsistent.

Figure 4.12 shows the (A) AMI, (B) Homogeneity and (C) number of predicted clusters of the

SBM, Leiden, and Spectral clustering algorithms on the complete and partial SSC data. SBM,

Leiden and Spectral display the same properties found within the TCGA data and synthetic

datasets used in previous chapters. The number of clusters detected by each method is

consistent. Again Spectral performs best for high level splits. For example, here we have

two large ground truth clusters of c.2800 nodes. Spectral finds a highly accurate split of these

clusters. Leiden still detects large clusters but splits them into subclusters. Across both TCGA

and SSC, SBM does not detect large clusters. The average cluster size of SBM clusters

across the SSC networks is 45 individuals within the partial data (N = 5615,Nc = 124) and 37

individuals within the complete data (N = 1435,Nc = 38).

Figure 4.13 shows the comparison of ground truth cluster prediction in both complete and

partial data using mean and graph-based imputation. We show the weighted F1 scores for

predicting ground truth clusters within the SSC data, categorised by nodetype. We show

the weighted F1 scores for partial data (y — Partial), complete data (y — Complete), and

a breakdown of y — Partial based on nodetype distinctions, specifically nodes exclusive to

partial data (y — P only ) and nodes present in both partial and complete datasets (y —

P & C). Finally, the weighted F1-score agreement between partial and complete predictions

(P & C consensus) is shown. Again the complete dataset shows improved prediction when

partial data is included (y — P & C vs y — Complete). This can be seen using both the

NEMO and Extreme Mean imputation. The increased number of observations introduces more

comprehensive covering of the feature space.
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Figure 4.12: Comparison of Clustering Algorithms on SSC Datasets by AMI, Homogen-
eity and Number of Predicted Clusters. The (A) AMI, (B) Homogeneity and (C) number of
predicted clusters of the SBM, Leiden, and Spectral clustering algorithms on the complete
and partial SSC data. Again Leiden and SBM discover a more fine grained split of the data
with larger number of predicted clusters. The contrast between SNF Mean Mod and SNF
Mean Pair is stark. SNF Mean pair discovers clusters with high homogeneity across all three
algorithms while SNF Mean Mod fails to separate siblings and probands.

Figure 4.13: Weighted F1 Prediction Performance for Partial and Complete SSC Data by
Nodetype. Comparison of ground truth cluster prediction in both complete and partial data
using mean and graph-based imputation on SSC data. We show the weighted F1 scores for
partial data (y — Partial), complete data (y — Complete), a breakdown of y — Partial based on
nodetype, nodes exclusive to partial data (y — P only ) and nodes present in both partial and
complete datasets (y — P & C), and the F1-score agreement of complete nodes between their
partial and complete clusters (P & C consensus). Prediction performance is highly accurate
using all imputation methods with all achieving a weighted F1-score > 0.98. The prediction of
complete nodes improves with the inclusion of partial data using NEMO imputation.
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Figure 4.14 shows a wordcloud visualisation of top 15 most informative variables used in the

prediction of A) Ground Truth, B) SBM, C) Leiden and D) Spectral clusters on the NEMO

network created on the complete set. These are the variables with the highest feature import-

ance across the cross validated random forest models used in the prediction of each cluster.

The size of the text of each feature is weighted by its importance. There is strong consistency

across the A) Ground Truth, C) Leiden and D) Spectral clusters. Summary scores associated

with SRS Parent, SCQ Parent and Vineland II modalities are highly important and effectively

distinguish between cluster labels. There is more variability in the importance of features

within SBM clusters. Few features are of large size and the origin of the features differ from

the other clusters with Vineland II feature ranking highly.

Figure 4.14: Top 15 Most Informative Variables in Cluster Label Prediction. Wordcloud
of top 15 most informative variables in the prediction of A) Ground Truth, B) SBM, C) Leiden
and D) Spectral clusters on the NEMO network created on the complete set. The size of
the visualised feature name corresponds to its relative importance. We can see the overall
summary scores of SRS Parent and SCQ Parent are highly informative for Ground Truth,
Leiden and Spectral clusters. For SBM clusters, the SRS Teacher and Vineland scores are
more informative, reinforcing the differences found in the AMI scores between the detected
clusters.
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4.6 Discussion

While maximum accuracy of a set of clustering labels holds paramount importance in specific

applications, mean performance of several clustering algorithms serves as a more indicative

measure of the overall quality of a network generated by an integration method. The choice

of optimal algorithm depends heavily on the application. A network where all clustering al-

gorithms perform strongly is far more flexible and robust. This is highly beneficial in scenarios

where ground truth labels are unavailable and algorithm selection is difficult.

Among the TCGA datasets, BRCA has the most challenging clustering problem. The mean

performance of all algorithms is lowest on BRCA. There are a higher number of clusters to

detect and the difference between the subtypes is based on gene expression of a set of 50

genes. The subtypes in LGG and KIPAN arise as a result of more significant adjustments

such as chromosomal deletion and histological features. The distribution differences between

subtypes is more significant in these datasets and the accuracy of the clustering algorithms

and integration methods reflect that.

The difficulty of the KIPAN and LGG clustering problems are similar; both have three ground

truth subclusters that are detected very successfully by spectral clustering and the homogen-

eity of clustering algorithms on both datasets are similar (Figure 4.3. However, the average

AMI score is higher in LGG. This difference is a result of the number of clusters predicted by

SBM and Leiden in LGG. Both algorithms detect fewer clusters which more closely aligns with

the actual number of clusters, resulting in a higher AMI.

Despite its complexity, SNF fails to exhibit substantial improvements in clustering accuracy

compared to simpler methods. Both NEMO (a mean of per-modality KNN networks) and

Mean Max (a simple mean of per-modality similarity scores) either match or surpass SNF’s

performance across both the SSC data and the three TCGA datasets (BRCA, KIPAN, and

LGG). SNF encounters challenges with partial data. In SNF, the absence of a node within

a single modality influences its neighbours in other modalities during the diffusion process.

When SNF successfully incorporates partial data, its performance is quite strong – for ex-

ample, SNF Mean Pair on SSC using correlation (Table 4.7) and SNF Mean Mod on TCGA

BRCA (4.5). Chapter 3 highlights a critical threshold where SNF’s clustering performance

drops abruptly in partial data. This phenomenon is visible in both the TCGA and SSC data. For

instance, in partial BRCA data, SNF Mean Pair performance plummets dramatically compared

to SNF Mean Mod (Figure 4.2). In the SSC data, the choice of similarity metric plays a role;

SNF performance is poor in methods using Euclidean distance. Although SNF occasionally
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performs on par or even outperforms other methods – for example, SNF Mean Mod on

partial LGG data showed the highest Max AMI score (Table 4.7) – this inconsistency poses a

significant drawback in unsupervised clustering endeavours.

The KNN step in NEMO integration serves as a filtering mechanism when aggregating sim-

ilarity scores across modalities. This proves advantageous when dealing with nodes that

consistently emerge as each other’s nearest neighbours across most modalities but exhibit

some noisy pairwise similarities in others. The aggregation of KNN networks helps avoid the

incorporation of outlier high dissimilarities within a single modality, enabling a more effect-

ive calculation of overall similarity. However, its effectiveness diminishes when the nearest

neighbours included in the KNN across modalities are not consistent. If the set of nearest

neighbours in each modality is different, after constructing the KNN, the mean calculation

does not have access to the similarity values of these nodes in other modalities. This leads to a

more random nearest neighbour selection process, reducing performance. In such instances,

Mean Max excels by aggregating all similarity values without disregarding a node’s pairwise

similarity in any modality. This contrast is evident in the results of Chapter 3 on Merged

clusters (Table 3.3), where within-cluster similarity remains consistent across modalities, yet

nearest neighbours selected in one modality might belong to other clusters. This likely explains

the variance in NEMO’s performance between the KIPAN and LGG datasets, where Mean

Max performs well.

From the performance of the clustering algorithms on the TCGA data, we can see that the op-

timal choice of clustering algorithm heavily depends on the problem application. The number

of clusters predicted by each method is consistent across the datasets used in this chapter

and the previous chapters. For example, Spectral tends to perform a high level split of the data

and predicts very few clusters, only two or three. In settings with limited number of ground truth

clusters, it performs quite well as can be seen in the Equal 3 clustering problem in Chapter

2, the TCGA data shown here and the SSC cohort. Leiden typically predicts c.5-10 clusters.

It scores a high AMI score in Chapters 2 and 3 as a result of problems with 10 ground truth

clusters. In contrast, SBM often predicts a far higher number of clusters. While all methods

are consistent in their approach, the optimal choice depends on the specific objectives. If the

aim is to discover or gain an understanding of a subpopulation, an algorithm that perform a

larger number of splits such as Leiden or SBM may be more suitable.
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The performance of single-modality networks highlights the advantages of multi-modal integ-

ration in tumour subtype analysis. Although single-modality networks occasionally perform

comparably—such as the performance of miRNA on KIPAN—multi-modal clustering consist-

ently surpasses the performance of individual modality approaches (Table 4.6). Moreover, the

advantages of multi-modal integration become even more apparent with partial data. Single-

modality networks are restricted to nodes with observations in that particular modality10. Multi-

modal analysis can leverage partial data that might be absent from a number of modalities.

The results on the SSC dataset align with those on TCGA. Again NEMO emerges as a

highly beneficial integration method that produces networks the enable accurate clustering.

On the complete data the differences between SNF, NEMO and Mean Si
11 are negligible.

The differences on partial data is highly significant. NEMO and SNF Mean Pair emerge as

significantly more accurate. SNF Mean Pair outperforming SNF Mean Mod is noticeable given

the reverse was true on TCGA data. Similar to Chapter 3, Mean ignoring NaN was highly

accurate and outperformed Mean Max.

A key benefit of multi-modal network construction is the ability to improve prediction models

through the inclusion of partial data. While imputation strategies exist for item non-response,

unit non-response and partially complete data is typically omitted from analysis. K-nearest

neighbour imputation is well established Troyanskaya et al. (2001) for handling missing feature

values. Here, I show the benefit of KNN imputation for unit non-response using constructed

networks. Figure 4.4 shows a clear improvement in prediction performance from my integrated

networks over a model trained on the complete dataset. Even more remarkable, this benefit is

not limited to prediction, community detection with partial included can improve the clustering

of the complete data. Even if partial data is omitted from final analysis, the inclusion of partial

data in network construction and model training offers clear benefits. Figures 4.9 & C.1 both

display improvements in the complete cluster detection (y — P & C), while Figures 4.10 &

4.13 display clear improvements in complete cluster prediction (y — P & C). The accuracy

of cluster detection in partial data can vary significantly, this is particularly clear in the TCGA

dataset, but the prediction benefits are far more consistent. While doubts may remain over

the inclusion of partial data in formal models, this analysis suggests it can provide significant

benefits.

SNF shows consistent struggles with partial data. In Chapter 3, I hypothesised poor per-

formance was a result of a conservative imputation strategy. This was partially true. SNF

showed significant improvements with both Mean Mod and Mean Pair imputation approaches

displaying comparable performance to NEMO, Mean ignoring NaN and Mean Max across the

TCGA and SSC datasets. However, the instability visible in Section 3.5.3 remains. At different

points both SNF Mean Mod and SNF Mean Pair have shown complete collapse in clustering

10. In this analysis, I enforce an extra limitation by restricting modalities to nodes in the complete dataset.
11. Mean Max and Mean ignoring NaN are identical without partial data.
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performance (SNF Mean Mod on TCGA BRCA in Figure 4.2 and SNF Mean Pair on SSC

in Figure 4.11). On SSC using euclidean metric both imputation approaches failed to embed

cluster information in the network (Table 4.7). It is not clear, a priori, when one imputation

strategy is preferable to the other. This is a significant drawback when ground truth labels

are unavailable and the performance of each strategy cannot be evaluated — a common

scenario in unsupervised clustering. This inability to incorporate partial data is unsurprising.

The imputed value is not isolated to the individual missing from a modality, it spreads to its

nearest neighbours in other modalities, affecting the wider neighbourhood. One of the key

benefits of multi-modal network construction is the ability to incorporate partial data and SNF

inability to do so is a significant drawback.

4.6.1 Limitations

The TCGA analysis presented here is significantly hampered by the absence of feature se-

lection. In many multi-omic pipelines, common practice involves leveraging techniques like

differential expression or lasso regression to identify features associated with a particular

target feature. My objective, however, was to assess unsupervised clustering. This prevented

the use of ground truth labels as a target, as incorporating them would artificially inflate

clustering performance. The current extensive number of features, especially in the DNAm

and mRNA modalities, raises concerns on the biological relevance of the produced clusters.

There is a danger the clusters are associated with random noise. Additionally, a consequence

of the lack of feature selection is the use of PCA in my ground truth prediction models.

Effective feature selection would enhance my prediction model by allowing the incorporation

of biologically relevant features, benefiting downstream tasks such as feature importance

analysis. The challenge would be the identification of an informative target feature.

An additional limitation in the presented analysis is the reliance on the predictability of a cluster

as an indirect measure of successful cluster detection. As shown, the predictability of a cluster

is strongly correlated with the number of clusters detected. Without a detailed exploration of

the features assigned to each cluster, it becomes challenging to assert that the clustering

algorithms are identifying meaningful clusters. This concern applies to both Spectral, which

detects a minimal number of clusters, and SBM, which detects a high number of clusters.

The success of Spectral may be potentially overestimated, while SBM’s performance could

be underestimated due to this indirect evaluation approach.

As mentioned, my (feature importance) analysis was conducted on PCA features. Extracting

biological meaning from PCA features is challenging, given that each PCA feature is derived

from a linear combination of the original features. Moreover, the utilisation of the origin of

important features as a statistic has significant limitations. It neglects the varying levels of

importance associated with each feature, merely counting the original modality of the top

10% ranked features. For instance, consider a scenario where one feature from Modality A
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alone distinguishes between clusters with 100% accuracy. If the remaining features in the top

10% originate from Modality B, the second modality will appear as more important even if the

Modality B features cannot distinguish between clusters at all. While this statistic can provide

an indication of the relative importance of modalities within a model, it should not be solely

relied upon for drawing definitive conclusions.

A final limitation in this analysis is the use of the Unaffected Sibling control group in SSC.

Subtyping within a condition is a far more challenging clustering problem than differentiation

between individuals with a condition and individuals without. As seen within the TCGA, sub-

typing of BRCA is far more challenging than subtyping KIPAN which comprised of subtypes

with significant histological differences. A further limitation imposed by the lack of ground truth

subtype targets in SSC is limitations in available data. The control group is limited to a subset

of the measurements undertaken by the proband. The most significant diagnostic measures

absent are the ADOS and ADI-R (see Table C.1). Both questionnaires form key components

of an ASD diagnosis and observations by a clinician are ultimately required.

4.6.2 Future Work

Within the SSC, the probands have a much more comprehensive set of measurements avail-

able (see Table C.1). Measurements of the Unaffected Sibling control group were limited

to a subset of the recorded diagnostic questionnaires. An in depth exploration of the wider

set of proband data could be highly rewarding. As discussed in Section 4.2.2, prior studies

have predominantly concentrated on summary scores or single diagnostic surveys. Given the

substantial levels of partial data within the SSC, adopting a network integration approach that

harnesses its capability to incorporate partial data could prove highly successful. A promising

future direction of study would involve comparing complete clusters to clusters derived from

partial data.

In conjunction with such efforts, conducting an in-depth analysis of cluster factors becomes

crucial. The preliminary exploration presented here is insufficient, particularly in the case of

SSC. Although factors have been identified, their distributions across clusters have not been

examined, and the reasons for their increased importance remain unidentified. For clusters to

be clinically relevant, a rigorous and interpretable analysis of cluster factors is essential.

The graph-based imputation method showcased in this study demonstrated significant suc-

cess in enabling accurate prediction of disease subtypes in TCGA and diagnosis of indi-

viduals with ASD using tabular features. Graph-based learning has proven highly effective

at leveraging network structure in conjunction with node features across a diverse range of

applications Zhou et al. (2020). An intriguing avenue for further investigation would be to
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explore graph learning techniques using partial complete multi-modal data. While subtype

prediction and ASD diagnosis exemplify types of problems that could benefit from graph-

based learning (node prediction), other applications such as the addition of entities to the

network (edge prediction) present interesting and potentially fruitful future directions.



Chapter 5

Discussion

5.1 Discussion

In this thesis, I assess components of the network construction process by quantifying their

influence on community detection performance. To facilitate this evaluation, I develop a data

generation framework featuring diverse data distributions, cluster compositions, and inter-

modality relationships. My findings are validated on two pertinent biomedical datasets —

discerning tumour subtypes in the Cancer Genome Atlas (TCGA) and distinguishing indi-

viduals with Autism Spectrum Disorder (ASD) in the Simons Simplex Collection (SSC). The

key outcomes of this thesis are outlined below:

Threshold sparsification proves ineffective in generating networks with meaningful com-

munity structures. A global approach to sparsification, it fails to embed the local inform-

ation that form clusters within a network. Notably, it faces challenges in handling clusters

with varying density in the feature space. In Chapter 2, I demonstrated a consistent decline

in clustering performance on Threshold networks compared to K-nearest neighbour (KNN)

networks, across various distributions and clustering problems. In Chapter 3 and Chapter

4, Extreme Mean, a variant of thresholding, consistently exhibited the poorest performance

among all integration methods. Thresholding is less scalable than KNN networks, lacking an

equivalent to approximate KNN methods. Hyperparameter selection is notably more challen-

ging, requiring normalisation or substantial fine-tuning. Threshold networks typically produce

disconnected components, isolated nodes, or necessitate significant increases in density

improve the connectivity of the network. Based on these findings, I recommend that KNN

networks be preferred for all community detection applications.

Similarity Network Fusion (SNF) B. Wang et al. (2014) does not consistently demonstrate

advantages over simpler integration methods such as mean similarity score (Mean Si) and

NEighborhood-based Multi-Omics clustering (NEMO) Rappoport and Shamir (2019). Using

our data generation framework, in Chapter 3, I highlighted several data scenarios where SNF

clustering performed significantly worse than Mean Si, notably in data problems where clusters

are merged in different modalities. SNF exhibited notable success in scenarios where clusters

are split into subclusters across modalities and when incorporating random modalities. Addi-

168
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tionally, as the number of modalities increased, SNF emerged as significantly superior. In

my synthetic data problems, SNF consistently outperformed NEMO integration. However, on

real-world datasets presented in Chapter 4, NEMO showed significant improvements over

SNF networks, particularly on the more challenging TCGA datasets — BRCA and LGG.

While the suitability of SNF varied across complete datasets, its performance on partial data

was consistently poor. NEMO proved to be more resilient to partial data, producing networks

that enable accurate clustering. With improved imputation, SNF can successfully incorporate

partial data, as seen in Chapter 4, but it is highly sensitive and frequently experiences a

collapse in network structure, failing to embed communities successfully.

Multi-modal integration offers significant benefits. As observed in Chapter 3 and Chapter

4, multi-modal integration consistently outperforms single modality networks for community

detection. The most notable advantage of multi-modal network construction lies in its ability

to facilitate the inclusion of partial modalities. Partially complete data provides significant

benefits. Not only does it significantly reduce data wastage but both clustering and prediction

problems can benefit form the inclusion of partial data. I demonstrated the ability of multi-

modal networks to offer improved imputation techniques for unit non-response partial data.

As observed in both TCGA and SSC data in Chapter 4, clustering and prediction of complete

data improved with the inclusion of partial data. While the accuracy on partial data can vary,

the benefits on complete data are evident. With a more comprehensive coverage of the feature

space, clustering and prediction algorithms demonstrate improved performance.

5.2 Future Work

In this thesis, I concentrated on the impact of network construction on community detection

performance. Graph representation learning, a rapidly growing field in network analysis, aims

to apply the success of deep learning network algorithms to network data. Successful ap-

proaches in this area enable effective node, edge, and graph-based predictions, making them

highly valuable. An in-depth exploration of the effects of network construction components on

graph learning performance would be valuable. While the findings of this work are likely to

remain relevant, the flexibility of graph learning might benefit from alternative approaches.

In Chapter 1, I noted that similarity network construction involves two key steps: similarity

estimation and edge sparsification1. While I have focused on the latter in this thesis, the

former remains under-explored. The impact of the scaled exponential kernel on Extreme

Mean performance in Chapter 3 highlighted that similarity measures can compensate for

1. With multi-modal data, an additional step is introduced — similarity integration.
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drawbacks in a particular method. Could threshold sparsification improve in performance with

alternative metrics? Are certain metrics more suitable for specific integration approaches?

While application-specific metrics are common, a potential future research direction would be

to explore the choice of similarity estimation in typical data scenarios.

As discussed in Chapter 2 and Chapter 3, an expansion of the data generation framework

would be highly beneficial. The full range of experiments possible with the current imple-

mentation has not yet been fully explored. With improvements in the range of distributions

offered and types of cluster mappings provided, more complex and in-depth experiments

could be conducted. For example, exploring hyperparameter selection when ground truth

data is unavailable or examining the effect of pairwise similarity consistency in more com-

plex scenarios. The current data generation framework, as well as the network construction

and clustering algorithms, can be found in the simnetpy package: https://github.com/

amarnane/simnetpy.

A key avenue of research is a comprehensive subtype analysis of the probands within the SSC

dataset. The success of partial data integration opens the possibility for comparing a wider

set of individuals and diagnostic measurements with more granular detail. A key restriction in

the analysis of developmental disorders such as ASD, is the use of different modules based

on age and language ability in key diagnostic measures. Comparisons across age ranges

are restricted by an inability to include these questionnaires due to partially complete data.

With the evidence presented here, an in-depth exploration of subtypes within SSC, comparing

both complete and partial data, and focusing on factors driving clusters could lead to clinical

implications.

5.3 Conclusion

In summary, this thesis illuminates the critical role of network construction. Through formal

demonstrations of its impact on node class prediction and clustering, I have shed light on an

often-overlooked aspect of current biomedical analysis pipelines. By providing comprehensive

guidance on network construction, this work offers valuable insights applicable across various

fields of study. I have identified key considerations for both single and multi-modal use cases

and illustrated the application of these principles on real world datasets. These findings not

only enhance our understanding of network analysis in biomedicine but also provide a prac-

tical foundation for future research.

https://github.com/amarnane/simnetpy
https://github.com/amarnane/simnetpy


Appendix A

Sparsification

A.1 Evaluation using AMI

Figure A.1: AMI Performance of Sparsification Methods Across Different Clustering
Algorithms on Mixed Gaussian Data. The AMI performance of the sparsification methods
using A SBM, B Leiden and C Spectral for mixed Gaussian data is shown. 10 instances of
data are evaluated using the optimal parameter identified for each clustering algorithm on
each sparsification method. The differences in performance form cluster problem to cluster
problem is not as significant. AMI does not punish incorrect prediction of the number of
clusters as severely and gap between SBM and Leiden clustering is reduced compared to
ARI.
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Figure A.2: AMI Performance of Sparsification Methods Across Different Clustering
Algorithms on Mixed Student’s-t Data. The AMI performance of the sparsification methods
using A SBM, B Leiden and C Spectral for mixed Student’s-t data is shown. 10 instances
of data are evaluated using the optimal parameter identified for each clustering algorithm on
each sparsification method. The differences between Linear-Skewed KNN and KNN seen in
ARI evaluation (Figure 2.14) disappear. Threshold network performance, while still the worst
performing, is not as poor when evaluated with AMI.

Figure A.3: AMI Performance of Sparsification Methods Across Different Clustering
Algorithms on Categorical Data.The AMI performance of the sparsification methods using
A SBM, B Leiden and C Spectral for mixed Student’s-t data is shown. 10 instances of data
are evaluated using the optimal parameter identified for each clustering algorithm on each
sparsification method.
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A.2 Additional Figures

Figure A.4: Hyperparameter Search and Performance Evaluation of Sparsification
Methods using mean SBM and Leiden ARI.The mean SBM and Leiden clustering ARI of
the five sparsification methods across all five cluster settings of mixed Gaussian data is shown
using euclidean distance as a metric. Panel A shows the change in performance for different
hyperparameter choices. To fairly compare the different parameters, we plot ARI vs graph
density. Panel B shows the distribution of mean SBM and Leiden ARI across 10 instances.
Hyperparameters are selected which result in the highest mean Leiden and SBM ARI score
on each method.
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Figure A.5: Relationship between Mean ARI and Clustering Quality Measures of Sparsi-
fication methods on Mixed Gaussian and Student’s-t Data. Average ARI for Leiden and
SBM methods for ground truth cluster quality score for Gaussian and Student’s-t distributed
data across all clustering problems vs. A Modularity, B Separability, C Conductance, D TPR,
E Clustering Coefficient and F average density. We can see quality of the true clusters is
positively correlated for A & B and negatively correlated for C, E, and F.
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Modularity Separability Conductance TPR Clustering Coefficient Density

0.857 0.715 -0.844 0.09 -0.816 -0.760

Table A.1: Correlation Coefficient between ARI and Clustering Quality Measures of
Sparsification methods on Mixed Gaussian and Student’s-t Data.Correlation values for
Panels A-F in Figure A.5 between ground truth cluster y quality score and mean ARI of Leiden
and SBM clustering for both Gaussian and Student-t distributed data.

Figure A.6: Relationship between Ground Truth Modularity and Mean ARI on Mixed
Gaussian Data. Ground truth cluster y modularity scores for mixed Gaussian data on the five
clustering problems. Ground truth modularity is strongly correlated with mean ARI of Leiden
and SBM clustering methods. We can see threshold based methods (Threshold & Combined)
consistently produce networks with lower modularity compared to the KNN-based methods.
Log-Skewed KNN creates networks with higher modularity than KNN in settings with large
clusters. Surprisingly, no method produces clusters with a modularity above 0.7 across all
problems.
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Figure A.7: Pairwise Distributions of Network Metrics and SBM ARI for KNN networks
by Cluster Problem on Gaussian Data. Difference in structure of KNN networks between
problems with a low number of large clusters and problems with a high number of smaller
clusters. Large clusters have a smaller diameter, lower average path length and significantly
lower predicted cluster modularity. This lower predicted cluster modularity corresponds
strongly to lower ARI performance.



Appendix B

Multi-modal Integration

B.1 Additional Figures
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Figure B.2: Comparison of Leiden and SBM clustering by Integration Method across
Modality Problems. Log AMI difference between Leiden and SBM clustering on SNF, Mean
Si and NEMO networks on 20 instances of 15 modality problems using both euclidean
and correlation metrics. Leiden is always preferable on Mean Si networks. SBM clustering
outperforms Leiden on SNF and NEMO on modalities with Merged clusters. SBM clustering
is a preferential choice on NEMO networks on multiple types of modality problems.
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Figure B.3: Change in Ground Truth Modularity with Increasing Partial — Easy and
Noisy Modality Problems. Change in Modularity y for five instances of A) Random and B)
Cluster Based partial data on I) Easy and II) Noisy modality problems. Mean imputing max
experiences a sharp decline in modularity in all cases. NEMO and Extreme Mean are relatively
unaffected by partial data both at random and cluster based. The modularity of most methods
is less affected by cluster based partial data - the modularity with all nodes having cluster
based NaN is higher than no nodes being partial on Noisy data.



Appendix C

Applications

C.1 SSC Data Measurements

Table C.1: List of Phenotypic Measures Collected Within the Simon’s Simplex Collec-
tion (SSC).

ID Name Measures Format

Diagnosis

ADI-R Autism Diagnostic Interview-Revised Parent report of be-

haviours related to

autism phenotype

Direct inter-

view

ADOS Autism Diagnostic Observation Sched-

ule Modules 1,2,3 and 4.

Observational

measure of autism

phenotype

Direct

examiner

observation

ABCL

18-59

Adult Behaviour Checklist for Ages 19 to

59

Problem behaviour Questionnaire

CBCL

2-5

Child Behaviour Checklist for ages 2 to 5

years

Problem behaviour Questionnaire

CBCL

6-18

Child Behaviour Checklist for ages 6 to

18 years

Problem behaviour Questionnaire

SCQ

Parent

Social Communication Questionnaire —

Parent report

Screen of ASD

markers

Questionnaire

SCQ

Teacher

Social Communication Questionnaire —

Teacher report

Screen of ASD

markers

Questionnaire

SRS

Adult

Social Responsiveness Scale — Adult

Research Version

Autistic traits on a

continuous scale

Questionnaire

SRS

Parent

Social Responsiveness Scale — Parent

report

Autistic traits on a

continuous scale

Questionnaire

Continued on next page
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Table C.1 – continued from previous page

ID Name Measures Format

SRS

Teacher

Social Responsiveness Scale —

Teacher report

Autistic traits on a

continuous scale

Questionnaire

TRF 6-

18

Teacher Report Form Problem behaviour

and school func-

tioning

Questionnaire

CTRF

2-5

Caregiver-Teacher Report Form Problem behaviour Questionnaire

Cognitive

DAS-II Differential Ability Scales, Second Edi-

tion

Cognitive ability Direct

assessment

Mullen Mullen Scales of Early Learning, AGS

Edition

Cognitive ability Direct

assessment

WASI Wechsler Abbreviated Scale of Intelli-

gence

Cognitive ability Direct

assessment

WISC-

IV

Wechsler Intelligence Scale for Children,

Fourth Edition

Cognitive ability Direct

assessment

Vineland

II

Vineland Adaptive Behaviour Scale-II Adaptive behaviour Interview

ABC Aberrant Behaviour Checklist Aberrant

behaviours

Questionnaire

DCDQ Developmental Coordination Disorder

Questionnaire

Motor delays Questionnaire

CTOPP-

NR

Comprehensive Test of Phonological

Processing Non-word Repetition

Speech and

memory of sounds

and non-words

Direct

assessment

PPVT-4 Peabody Picture Vocabulary Test, Fourth

Edition

Receptive single-

word vocabulary

Direct

assessment

Purdue Purdue Peg Board Fine-motor dexter-

ity

Direct

assessment

Raven’s Raven’s Standard Progressive Matrices Nonverbal problem

solving

Direct

assessment

RBS-R Repetitive Behaviour Scale-Revised Repetitive

behaviours

Questionnaire
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C.2 Additional Figures

Figure C.1: AMI Clustering Performance for Partial and Complete SSC Data by Node-
type. Breakdown of partial and complete data clustering performance by nodetype through
the mean AMI scores generated by SBM, Leiden, and Spectral clustering algorithms on multi-
modal integration networks on SSC. We show the AMI scores for partial data (y - Partial),
complete data (y - Complete), a breakdown of y-Partial based on nodetype, nodes exclusive
to partial data (y - P only ) and nodes present in both partial and complete datasets (y - P &
C), and the AMI agreement of complete nodes between their partial and complete clusters (P
& C consensus). Mean Max, NEMO and SNF Mean Pair improve the clustering of the partial-
complete nodes when partial data is included.
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Figure C.2: Predictability of Clusters Detected by SBM, Leiden and Spectral Algorithms
on SSC Data. Weighted F1 scores of the prediction of cluster labels generated by SBM,
Leiden, and Spectral clustering algorithms. These scores are derived using 5-fold cross-
validated random forest models trained on both partial and complete SSC datasets. Leiden
clusters are highly predictable and have high weighted F1-score on both partial and complete
data. Leiden clusters on SSC are highly predictable despite the low AMI. These sub-clusters
identified by Leiden (Figure 4.12) may have clinical importance and might worthy of further
exploration.
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